Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(12): e2122245119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35302894

RESUMEN

High-performance metabolic analysis is emerging in the diagnosis and prognosis of breast cancer (BrCa). Still, advanced tools are in demand to deliver the application potentials of metabolic analysis. Here, we used fast nanoparticle-enhanced laser desorption/ionization mass spectrometry (NPELDI-MS) to record serum metabolic fingerprints (SMFs) of BrCa in seconds, achieving high reproducibility and low consumption of direct serum detection without treatment. Subsequently, machine learning of SMFs generated by NPELDI-MS functioned as an efficient readout to distinguish BrCa from non-BrCa with an area under the curve of 0.948. Furthermore, a metabolic prognosis scoring system was constructed using SMFs with effective prediction performance toward BrCa (P < 0.005). Finally, we identified a biomarker panel of seven metabolites that were differentially enriched in BrCa serum and their related pathways. Together, our findings provide an efficient serum metabolic tool to characterize BrCa and highlight certain metabolic signatures as potential diagnostic and prognostic factors of diseases including but not limited to BrCa.


Asunto(s)
Neoplasias de la Mama , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Espectrometría de Masas/métodos , Pronóstico , Reproducibilidad de los Resultados
2.
Hepatology ; 77(6): 1849-1865, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36799446

RESUMEN

BACKGROUND AND AIMS: Secretin (SCT) and secretin receptor (SR, only expressed on cholangiocytes within the liver) play key roles in modulating liver phenotypes. Forkhead box A2 (FoxA2) is required for normal bile duct homeostasis by preventing the excess of cholangiocyte proliferation. Short-term administration of the SR antagonist (SCT 5-27) decreased ductular reaction and liver fibrosis in bile duct ligated and Mdr2 -/- [primary sclerosing cholangitis (PSC), model] mice. We aimed to evaluate the effectiveness and risks of long-term SCT 5-27 treatment in Mdr2 -/- mice. APPROACH AND RESULTS: In vivo studies were performed in male wild-type and Mdr2 -/- mice treated with saline or SCT 5-27 for 3 months and human samples from late-stage PSC patients and healthy controls. Compared with controls, biliary SCT/SR expression and SCT serum levels increased in Mdr2 -/- mice and late-stage PSC patients. There was a significant increase in ductular reaction, biliary senescence, liver inflammation, angiogenesis, fibrosis, biliary expression of TGF-ß1/VEGF-A axis, and biliary phosphorylation of protein kinase A and ERK1/2 in Mdr2 -/- mice. The biliary expression of miR-125b and FoxA2 decreased in Mdr2 -/- compared with wild-type mice, which was reversed by long-term SCT 5-27 treatment. In vitro , SCT 5-27 treatment of a human biliary PSC cell line decreased proliferation and senescence and SR/TGF-ß1/VEGF-A axis but increased the expression of miR-125b and FoxA2. Downregulation of FoxA2 prevented SCT 5-27-induced reduction in biliary damage, whereas overexpression of FoxA2 reduced proliferation and senescence in the human PSC cell line. CONCLUSIONS: Modulating the SCT/SR axis may be critical for managing PSC.


Asunto(s)
Colangitis Esclerosante , MicroARNs , Humanos , Masculino , Ratones , Animales , Secretina/farmacología , Secretina/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor A de Crecimiento Endotelial Vascular , Colangitis Esclerosante/genética , Cirrosis Hepática/metabolismo , Hígado/patología , Ratones Noqueados , MicroARNs/metabolismo , Modelos Animales de Enfermedad
3.
Hepatology ; 78(1): 243-257, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36799449

RESUMEN

BACKGROUND AND AIMS: NAFLD is characterized by steatosis, hepatic inflammation, and fibrosis, which can develop into NASH. Patients with NAFLD/NASH have increased ductular reaction (DR) and biliary senescence. High fat/high cholesterol diet feeding increases biliary senescence, DR, and biliary insulin-like growth factor-1 (IGF-1) expression in mice. p16/IGF-1 converges with fork-head box transcription factor O1 (FOXO1) through E2F1. We evaluated p16 inhibition on NAFLD phenotypes and biliary E2F1/FOXO1/IGF-1 signaling. APPROACH AND RESULTS: 4-week wild-type (C57BL/6J) male mice were fed a control diet (CD) or high fat/high cholesterol diet and received either p16 or control Vivo Morpholino (VM) by tail vein injection 2× during the 16th week of feeding. We confirmed p16 knockdown and examined: (i) NAFLD phenotypes; (ii) DR and biliary senescence; (iii) serum metabolites; and (iv) biliary E2F1/FOXO1/IGF-1 signaling. Human normal, NAFLD, and NASH liver samples and isolated cholangiocytes treated with control or p16 VM were evaluated for p16/E2F1/FOXO1/IGF-1 signaling. p16 VM treatment reduced cholangiocyte and hepatocyte p16. In wild-type high fat/high cholesterol diet mice with control VM, there were increased (i) NAFLD phenotypes; (ii) DR and biliary senescence; (iii) serum metabolites; and (iv) biliary E2F1/FOXO1/IGF-1 signaling; however, p16 VM treatment reduced these parameters. Biliary E2F1/FOX-O1/IGF-1 signaling increased in human NAFLD/NASH but was blocked by p16 VM. In vitro , p16 VM reduced biliary E2f1 and Foxo1 transcription by inhibiting RNA pol II binding and E2F1 binding at the Foxo1 locus, respectively. Inhibition of E2F1 reduced biliary FOXO1 in vitro. CONCLUSION: Attenuating hepatic p16 expression may be a therapeutic approach for improving NAFLD/NASH phenotypes.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Masculino , Ratones , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Proteína Forkhead Box O1 , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fenotipo , Inhibidor p16 de la Quinasa Dependiente de Ciclina
4.
FASEB J ; 37(2): e22731, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36583714

RESUMEN

Primary sclerosing cholangitis (PSC) is a chronic liver disease characterized by inflammatory responses and fibrotic scar formation leading to cholestasis. Ductular reaction and liver fibrosis are typical liver changes seen in human PSC and cholestasis patients. The current study aimed to clarify the role of liver-specific microRNA-34a in the cholestasis-associated ductular reaction and liver fibrosis. We demonstrated that miR-34a expression was significantly increased in human PSC livers along with the enhanced ductular reaction, cellular senescence, and liver fibrosis. A liver-specific miR-34a knockout mouse was established by crossing floxed miR-34a mice with albumin-promoter-driven Cre mice. Bile duct ligation (BDL) induced liver injury characterized by necrosis, fibrosis, and immune cell infiltration. In contrast, liver-specific miR-34a knockout in BDL mice resulted in decreased biliary ductular pathology associated with the reduced cholangiocyte senescence and fibrotic responses. The miR-34a-mediated ductular reactions may be functioning through Sirt-1-mediated senescence and fibrosis. The hepatocyte-derived conditioned medium promoted LPS-induced fibrotic responses and senescence in cholangiocytes, and miR-34a inhibitor suppressed these effects, further supporting the involvement of paracrine regulation. In conclusion, we demonstrated that liver-specific miR-34a plays an important role in ductular reaction and fibrotic responses in a BDL mouse model of cholestatic liver disease.


Asunto(s)
Colestasis , Hepatopatías , MicroARNs , Humanos , Ratones , Animales , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Colestasis/genética , Colestasis/patología , Conductos Biliares/cirugía , Conductos Biliares/metabolismo , Conductos Biliares/patología , Fibrosis , Hepatopatías/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
5.
Mol Breed ; 44(2): 6, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38261843

RESUMEN

Panicle length is a crucial trait tightly associated with spikelets per panicle and grain yield in rice. To dissect the genetic basis of panicle length, a population of 161 recombinant inbred lines (RILs) was developed from the cross between an aus variety Chuan 7 (C7) and a tropical Geng variety Haoboka (HBK). C7 has a panicle length of 30 cm, 7 cm longer than that of HBK, and the panicle length was normally distributed in the RIL population. A total of six quantitative trait loci (QTLs) for panicle length were identified, and single QTLs explained the phenotypic variance from 4.9 to 18.1%. Among them, three QTLs were mapped to the regions harbored sd1, DLT, and Ehd1, respectively. To validate the genetic effect of a minor QTL qPL5, a near-isogenic F2 (NIF2) population segregated at qPL5 was developed. Interestingly, panicle length displayed bimodal distribution, and heading date also exhibited significant variation in the NIF2 population. qPL5 accounted for 66.5% of the panicle length variance. The C7 allele at qPL5 increased panicle length by 2.4 cm and promoted heading date by 5 days. Finally, qPL5 was narrowed down to an 80-kb region flanked by markers M2197 and M2205 using a large NIF2 population of 7600 plants. LOC_Os05g37540, encoding a phytochrome signal protein whose homolog in Arabidopsis enlarges panicle length, is regarded as the candidate gene because a single-nucleotide mutation (C1099T) caused a premature stop codon in HBK. The characterization of qPL5 with enlarging panicle length but promoting heading date makes its great value in breeding early mature varieties without yield penalty in rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01443-2.

6.
J Biol Chem ; 298(7): 102082, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35660418

RESUMEN

The stemness of cancer cells contributes to tumorigenesis, the heterogeneity of malignancies, cancer metastasis, and therapeutic resistance. However, the roles and regulatory mechanisms maintaining stemness among breast cancer subtypes remain elusive. Our previous studies have demonstrated that ectopic expression and dynamic alteration of the mesenchymal transcription factor forkhead box F2 (FOXF2) differentially regulates breast cancer progression and metastasis organotropism in a cell subtype-specific manner. Here, we reveal the underlying mechanism by which FOXF2 enhances stemness in luminal breast cancer cells but suppresses that in basal-like breast cancer (BLBC) cells. We show that luminal breast cancer and BLBC cells with FOXF2-regulated stemness exhibit partial mesenchymal stem cell properties that toward osteogenic differentiation and myogenic differentiation, respectively. Furthermore, we show that FOXF2 activates the Wnt signaling pathway in luminal breast cancer cells but represses this pathway in BLBC cells by recruiting nuclear receptor coactivator 3 (NCoA3) and nuclear receptor corepressor 1 (NCoR1) to the promoters of Wnt family member 2B (WNT2B) and frizzled class receptor 1 (FZD1) genes to activate and repress their transcription, respectively. We propose that targeting the Wnt signaling pathway is a promising strategy for the treatment of breast cancers with dysregulated expression of FOXF2.


Asunto(s)
Neoplasias de la Mama , Factores de Transcripción Forkhead , Células Madre Neoplásicas , Vía de Señalización Wnt , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Células Madre Neoplásicas/patología , Osteogénesis
7.
J Biol Chem ; 298(7): 102063, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35618020

RESUMEN

Tumor angiogenesis is closely associated with the metastasis and progression of non-small cell lung cancer (NSCLC), a highly vascularized solid tumor. However, novel therapeutics are lacking for the treatment of this cancer. Here, we developed a series of 2-aryl-4-(3,4,5-trimethoxy-benzoyl)-5-substituted-1,2,3-triazol analogs (6a-6x) as tubulin colchicine-binding site inhibitors, aiming to find a novel promising drug candidate for NSCLC treatment. We first identified 2-(2-fluorophenyl)-3-(3,4,5-trimethoxybenzoyl)-5-(3-hydroxyazetidin-1-yl)-2H-1,2,3-triazole (6h) as a hit compound, which inhibited angiogenesis induced by NSCLC cells both in vivo and in vitro. In addition, our data showed that 6h could tightly bind to the colchicine-binding site of tubulin and inhibit tubulin polymerization. We also found that 6h could effectively induce G2/M cell cycle arrest of A549 and H460 cells, inhibit cell proliferation, and induce apoptosis. Furthermore, we showed 6h had the potential to inhibit the migration and invasion of NSCLC cells, two basic characteristics of tumor metastasis. Finally, we found 6h could effectively inhibit tumor progression in A549 xenograft mouse models with minimal toxicity. Taken together, these findings provide strong evidence for the development of 6h as a promising microtubule colchicine-binding site inhibitor for NSCLC treatment.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Colchicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/uso terapéutico
8.
Plant J ; 112(1): 68-83, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35912411

RESUMEN

Heterosis refers to the superior performance of hybrids over their parents, which is a general phenomenon occurring in diverse organisms. Many commercial hybrids produce high yield without delayed flowering, which we refer to as optimal heterosis and is desired in hybrid breeding. Here, we attempted to illustrate the genomic basis of optimal heterosis by reinvestigating the single-locus quantitative trait loci and digenic interactions of two traits, the number of spikelets per panicle (SP) and heading date (HD), using recombinant inbred lines and 'immortalized F2 s' derived from the elite rice (Oryza sativa) hybrid Shanyou 63. Our analysis revealed a regulatory network that may provide an approximation to the genetic constitution of the optimal heterosis observed in this hybrid. In this network, Ghd7 works as the core element, and three other genes, Ghd7.1, Hd1, and Hd3a/RFT1, also have major roles. The effects of positive dominance by Ghd7 and Ghd7.1 and negative dominance by Hd1 and Hd3a/RFT1 in the hybrid background contribute the major part to the high SP without delaying HD; numerous epistatic interactions, most of which involve Ghd7, also play important roles collectively. The results expand our understanding of the genic interaction networks underlying hybrid rice breeding programs, which may be very useful in future crop genetic improvement.


Asunto(s)
Vigor Híbrido , Oryza , Vigor Híbrido/genética , Oryza/genética , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
9.
Am J Physiol Gastrointest Liver Physiol ; 324(1): G60-G77, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410025

RESUMEN

Primary sclerosing cholangitis (PSC) is characterized by increased ductular reaction (DR), liver fibrosis, hepatic total bile acid (TBA) levels, and mast cell (MC) infiltration. Apical sodium BA transporter (ASBT) expression increases in cholestasis, and ileal inhibition reduces PSC phenotypes. FVB/NJ and multidrug-resistant 2 knockout (Mdr2-/-) mice were treated with control or ASBT Vivo-Morpholino (VM). We measured 1) ASBT expression and MC presence in liver/ileum; 2) liver damage/DR; 3) hepatic fibrosis/inflammation; 4) biliary inflammation/histamine serum content; and 5) gut barrier integrity/hepatic bacterial translocation. TBA/BA composition was measured in cholangiocyte/hepatocyte supernatants, intestine, liver, serum, and feces. Shotgun analysis was performed to ascertain microbiome changes. In vitro, cholangiocytes were treated with BAs ± ASBT VM, and histamine content and farnesoid X receptor (FXR) signaling were determined. Treated cholangiocytes were cocultured with MCs, and FXR signaling, inflammation, and MC activation were measured. Human patients were evaluated for ASBT/MC expression and histamine/TBA content in bile. Control patient- and PSC patient-derived three-dimensional (3-D) organoids were generated; ASBT, chymase, histamine, and fibroblast growth factor-19 (FGF19) were evaluated. ASBT VM in Mdr2-/- mice decreased 1) biliary ASBT expression, 2) PSC phenotypes, 3) hepatic TBA, and 4) gut barrier integrity compared with control. We found alterations between wild-type (WT) and Mdr2-/- mouse microbiome, and ASBT/MC and bile histamine content increased in cholestatic patients. BA-stimulated cholangiocytes increased MC activation/FXR signaling via ASBT, and human PSC-derived 3-D organoids secrete histamine/FGF19. Inhibition of hepatic ASBT ameliorates cholestatic phenotypes by reducing cholehepatic BA signaling, biliary inflammation, and histamine levels. ASBT regulation of hepatic BA signaling offers a therapeutic avenue for PSC.NEW & NOTEWORTHY We evaluated knockdown of the apical sodium bile acid transporter (ASBT) using Vivo-Morpholino in Mdr2KO mice. ASBT inhibition decreases primary sclerosing cholangitis (PSC) pathogenesis by reducing hepatic mast cell infiltration, altering bile acid species/cholehepatic shunt, and regulating gut inflammation/dysbiosis. Since a large cohort of PSC patients present with IBD, this study is clinically important. We validated findings in human PSC and PSC-IBD along with studies in novel human 3-D organoids formed from human PSC livers.


Asunto(s)
Colangitis Esclerosante , Colestasis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Colangitis Esclerosante/tratamiento farmacológico , Colangitis Esclerosante/genética , Colangitis Esclerosante/patología , Ácidos y Sales Biliares , Histamina , Morfolinos/uso terapéutico , Hígado/metabolismo , Colestasis/patología , Cirrosis Hepática/patología , Inflamación/patología , Proteínas de Transporte de Membrana , Enfermedades Inflamatorias del Intestino/patología
10.
Am J Pathol ; 192(6): 826-836, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35337836

RESUMEN

Primary liver cancer includes hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Incidence of liver cancer has been increasing in recent years, and the 5-year survival is <20%. HCC and CCA are often accompanied with a dense stroma coupled with infiltrated immune cells, which is referred to as the tumor microenvironment. Populations of specific immune cells, such as high density of CD163+ macrophages and low density of CD8+ T cells, are associated with prognosis and survival rates in both HCC and CCA. Immune cells in the tumor microenvironment can be a therapeutic target for liver cancer treatments. Previous studies have introduced immunotherapy using immune checkpoint inhibitors, pulsed dendritic cells, or transduced T cells, to enhance cytotoxicity of immune cells and inhibit tumor growth. This review summarizes current understanding of the roles of immune cells in primary liver cancer covering HCC and CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Linfocitos T CD8-positivos/patología , Carcinoma Hepatocelular/patología , Colangiocarcinoma/patología , Humanos , Neoplasias Hepáticas/patología , Microambiente Tumoral
11.
Hepatology ; 75(4): 797-813, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34743371

RESUMEN

BACKGROUND AND AIMS: Melatonin reduces biliary damage and liver fibrosis in cholestatic models by interaction with melatonin receptors 1A (MT1) and 1B (MT2). MT1 and MT2 can form heterodimers and homodimers, but MT1 and MT2 can heterodimerize with the orphan receptor G protein-coupled receptor 50 (GPR50). MT1/GPR50 dimerization blocks melatonin binding, but MT2/GPR50 dimerization does not affect melatonin binding. GPR50 can dimerize with TGFß receptor type I (TGFßRI) to activate this receptor. We aimed to determine the differential roles of MT1 and MT2 during cholestasis. APPROACH AND RESULTS: Wild-type (WT), MT1 knockout (KO), MT2KO, and MT1/MT2 double KO (DKO) mice underwent sham or bile duct ligation (BDL); these mice were also treated with melatonin. BDL WT and multidrug resistance 2 KO (Mdr2-/- ) mice received mismatch, MT1, or MT2 Vivo-Morpholino. Biliary expression of MT1 and GPR50 increases in cholestatic rodents and human primary sclerosing cholangitis (PSC) samples. Loss of MT1 in BDL and Mdr2-/- mice ameliorated biliary and liver damage, whereas these parameters were enhanced following loss of MT2 and in DKO mice. Interestingly, melatonin treatment alleviated BDL-induced biliary and liver injury in BDL WT and BDL MT2KO mice but not in BDL MT1KO or BDL DKO mice, demonstrating melatonin's interaction with MT1. Loss of MT2 or DKO mice exhibited enhanced GPR50/TGFßR1 signaling, which was reduced by loss of MT1. CONCLUSIONS: Melatonin ameliorates liver phenotypes through MT1, whereas down-regulation of MT2 promotes liver damage through GPR50/TGFßR1 activation. Blocking GPR50/TGFßR1 binding through modulation of melatonin signaling may be a therapeutic approach for PSC.


Asunto(s)
Colestasis , Melatonina , Animales , Colestasis/complicaciones , Colestasis/tratamiento farmacológico , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/etiología , Melatonina/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones , Ratones Noqueados , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/metabolismo
12.
Angew Chem Int Ed Engl ; 62(9): e202216969, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36622964

RESUMEN

We present immunoassay-based desorption electrospray ionization mass spectrometry imaging (immuno-DESI-MSI) to visualize functional macromolecules such as drug targets and cascade signaling factors. A set of boronic acid mass tags (BMTs) were synthesized to label antibodies as MSI probes. The boronic ester bond is employed to cross-link the BMT with the galactosamine-modified antibody. The BMT can be released from its tethered antibody by ultrafast cleavage of the boronic ester bond caused by the acidic condition of sprayed DESI microdroplets containing water. The fluorescent moiety enables the BMT to work in both optical and MS imaging modes. The positively charged quaternary ammonium group enhances the ionization efficiency. The introduction of the boron element also makes mass tags readily identified because of its unique isotope pattern. Immuno-DESI-MSI provides an appealing strategy to spatially map macromolecules beyond what can be observed by conventional DESI-MSI, provided antibodies are available to the targeted molecules of interest.


Asunto(s)
Diagnóstico por Imagen , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos
13.
Hepatology ; 74(1): 164-182, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33434322

RESUMEN

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is simple steatosis but can develop into nonalcoholic steatohepatitis (NASH), characterized by liver inflammation, fibrosis, and microvesicular steatosis. Mast cells (MCs) infiltrate the liver during cholestasis and promote ductular reaction (DR), biliary senescence, and liver fibrosis. We aimed to determine the effects of MC depletion during NAFLD/NASH. APPROACH AND RESULTS: Wild-type (WT) and KitW-sh (MC-deficient) mice were fed a control diet (CD) or a Western diet (WD) for 16 weeks; select WT and KitW-sh WD mice received tail vein injections of MCs 2 times per week for 2 weeks prior to sacrifice. Human samples were collected from normal, NAFLD, or NASH mice. Cholangiocytes from WT WD mice and human NASH have increased insulin-like growth factor 1 expression that promotes MC migration/activation. Enhanced MC presence was noted in WT WD mice and human NASH, along with increased DR. WT WD mice had significantly increased steatosis, DR/biliary senescence, inflammation, liver fibrosis, and angiogenesis compared to WT CD mice, which was significantly reduced in KitW-sh WD mice. Loss of MCs prominently reduced microvesicular steatosis in zone 1 hepatocytes. MC injection promoted WD-induced biliary and liver damage and specifically up-regulated microvesicular steatosis in zone 1 hepatocytes. Aldehyde dehydrogenase 1 family, member A3 (ALDH1A3) expression is reduced in WT WD mice and human NASH but increased in KitW-sh WD mice. MicroRNA 144-3 prime (miR-144-3p) expression was increased in WT WD mice and human NASH but reduced in KitW-sh WD mice and was found to target ALDH1A3. CONCLUSIONS: MCs promote WD-induced biliary and liver damage and may promote microvesicular steatosis development during NAFLD progression to NASH through miR-144-3p/ALDH1A3 signaling. Inhibition of MC activation may be a therapeutic option for NAFLD/NASH treatment.


Asunto(s)
Sistema Biliar/patología , Dieta Occidental/efectos adversos , Cirrosis Hepática/inmunología , Mastocitos/inmunología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Aldehído Oxidorreductasas/genética , Animales , Sistema Biliar/inmunología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/inmunología , Hepatocitos/patología , Humanos , Hígado/inmunología , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Mastocitos/metabolismo , Ratones , MicroARNs/metabolismo , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Adulto Joven
14.
Hepatology ; 73(6): 2411-2428, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32964473

RESUMEN

BACKGROUND AND AIMS: Apelin (APLN) is the endogenous ligand of its G protein-coupled receptor, apelin receptor (APJ). APLN serum levels are increased in human liver diseases. We evaluated whether the APLN-APJ axis regulates ductular reaction and liver fibrosis during cholestasis. APPROACH AND RESULTS: We measured the expression of APLN and APJ and serum APLN levels in human primary sclerosing cholangitis (PSC) samples. Following bile duct ligation (BDL) or sham surgery, male wild-type (WT) mice were treated with ML221 (APJ antagonist) or saline for 1 week. WT and APLN-/- mice underwent BDL or sham surgery for 1 week. Multidrug resistance gene 2 knockout (Mdr2-/- ) mice were treated with ML221 for 1 week. APLN levels were measured in serum and cholangiocyte supernatants, and cholangiocyte proliferation/senescence and liver inflammation, fibrosis, and angiogenesis were measured in liver tissues. The regulatory mechanisms of APLN-APJ in (1) biliary damage and liver fibrosis were examined in human intrahepatic biliary epithelial cells (HIBEpiCs) treated with APLN and (2) hepatic stellate cell (HSC) activation in APLN-treated human HSC lines (HHSteCs). APLN serum levels and biliary expression of APLN and APJ increased in PSC samples. APLN levels were higher in serum and cholangiocyte supernatants from BDL and Mdr2-/- mice. ML221 treatment or APLN-/- reduced BDL-induced and Mdr2-/- -induced cholangiocyte proliferation/senescence, liver inflammation, fibrosis, and angiogenesis. In vitro, APLN induced HIBEpiC proliferation, increased nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) expression, reactive oxygen species (ROS) generation, and extracellular signal-regulated kinase (ERK) phosphorylation. Pretreatment of HIBEpiCs with ML221, diphenyleneiodonium chloride (Nox4 inhibitor), N-acetyl-cysteine (NAC, ROS inhibitor), or PD98059 (ERK inhibitor) reduced APLN-induced cholangiocyte proliferation. Activation of HHSteCs was induced by APLN but reduced by NAC. CONCLUSIONS: The APLN-APJ axis induces cholangiocyte proliferation through Nox4/ROS/ERK-dependent signaling and HSC activation through intracellular ROS. Modulation of the APLN-APJ axis may be important for managing cholangiopathies.


Asunto(s)
Receptores de Apelina/metabolismo , Apelina/metabolismo , Colangitis Esclerosante/metabolismo , Colestasis/metabolismo , Cirrosis Hepática/metabolismo , Nitrobenzoatos/farmacología , Piranos/farmacología , Acetilcisteína/farmacología , Animales , Receptores de Apelina/antagonistas & inhibidores , Proliferación Celular , Colangitis Esclerosante/patología , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Flavonoides/farmacología , Depuradores de Radicales Libres/farmacología , Células Estrelladas Hepáticas/metabolismo , Humanos , Ratones , NADPH Oxidasa 4/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Hepatology ; 74(5): 2684-2698, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34164827

RESUMEN

BACKGROUND AND AIMS: Cholestasis is characterized by increased total bile acid (TBA) levels, which are regulated by farnesoid X receptor (FXR)/FGF15. Patients with primary sclerosing cholangitis (PSC) typically present with inflammatory bowel disease (IBD). Mast cells (MCs) (i) express FXR and (ii) infiltrate the liver during cholestasis promoting liver fibrosis. In bile-duct-ligated (BDL) MC-deficient mice (B6.Cg-KitW-sh /HNihrJaeBsmJ [KitW-sh ]), ductular reaction (DR) and liver fibrosis decrease compared with BDL wild type, and MC injection exacerbates liver damage in normal mice. APPROACH AND RESULTS: In this study, we demonstrated that MC-FXR regulates biliary FXR/FGF15, DR, and hepatic fibrosis and alters intestinal FXR/FGF15. We found increased MC number and biliary FXR expression in patients with liver injury compared with control. Histamine and FGF19 serum levels and small heterodimer partner expression increase in patients PSC and PSC-IBD compared with healthy controls. MC injection increased liver damage, DR, inflammation, biliary senescence/senescence-associated secretory phenotype (SASP), fibrosis, and histamine in KitW-sh mice. Inhibition of MC-FXR before injection reduced these parameters. BDL and KitW-sh mice injected with MCs displayed increased TBA content, biliary FXR/FGF15, and intestinal inflammation, which decreased in BDL KitW-sh and KitW-sh mice injected with MC-FXR. MCs increased ileal FXR/FGF15 expression in KitW-sh mice that was reduced following FXR inhibition. BDL and multidrug resistance 2/ATP-binding cassette family 2 member 4 knockout (Mdr2-/- ) mice, models of PSC, displayed increased intestinal MC infiltration and FXR/FGF15 expression. These were reduced following MC stabilization with cromolyn sodium in Mdr2-/- mice. In vitro, MC-FXR inhibition decreased biliary proliferation/SASP/FGF and hepatic stellate cell activation. CONCLUSIONS: Our studies demonstrate that MC-FXR plays a key role in liver damage and DR, including TBA regulation through alteration of intestinal and biliary FXR/FGF15 signaling.


Asunto(s)
Colangitis Esclerosante/complicaciones , Colestasis/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Mastocitos/inmunología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Conductos Biliares/inmunología , Conductos Biliares/patología , Colangitis Esclerosante/inmunología , Colangitis Esclerosante/patología , Colestasis/patología , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Masculino , Mastocitos/metabolismo , Ratones
16.
Hepatology ; 74(4): 1845-1863, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33928675

RESUMEN

BACKGROUND AND AIMS: Human NAFLD is characterized at early stages by hepatic steatosis, which may progress to NASH when the liver displays microvesicular steatosis, lobular inflammation, and pericellular fibrosis. The secretin (SCT)/secretin receptor (SCTR) axis promotes biliary senescence and liver fibrosis in cholestatic models through down-regulation of miR-125b signaling. We aim to evaluate the effect of disrupting biliary SCT/SCTR/miR-125b signaling on hepatic steatosis, biliary senescence, and liver fibrosis in NAFLD/NASH. APPROACH AND RESULTS: In vivo, 4-week-old male wild-type, Sct-/- and Sctr-/- mice were fed a control diet or high-fat diet (HFD) for 16 weeks. The expression of SCT/SCTR/miR-125b axis was measured in human NAFLD/NASH liver samples and HFD mouse livers by immunohistochemistry and quantitative PCR. Biliary/hepatocyte senescence, ductular reaction, and liver angiogenesis were evaluated in mouse liver and human NAFLD/NASH liver samples. miR-125b target lipogenesis genes in hepatocytes were screened and validated by custom RT2 Profiler PCR array and luciferase assay. Biliary SCT/SCTR expression was increased in human NAFLD/NASH samples and in livers of HFD mice, whereas the expression of miR-125b was decreased. Biliary/hepatocyte senescence, ductular reaction, and liver angiogenesis were observed in human NAFLD/NASH samples as well as HFD mice, which were decreased in Sct-/- and Sctr-/- HFD mice. Elovl1 is a lipogenesis gene targeted by miR-125b, and its expression was also decreased in HFD mouse hepatocytes following Sct or Sctr knockout. Bile acid profile in fecal samples have the greatest changes between wild-type mice and Sct-/- /Sctr-/- mice. CONCLUSION: The biliary SCT/SCTR/miR-125b axis promotes liver steatosis by up-regulating lipid biosynthesis gene Elovl1. Targeting the biliary SCT/SCTR/miR-125b axis may be key for ameliorating phenotypes of human NAFLD/NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/genética , Receptores Acoplados a Proteínas G/genética , Receptores de la Hormona Gastrointestinal/genética , Secretina/genética , Animales , Conductos Biliares/citología , Conductos Biliares/metabolismo , Línea Celular , Senescencia Celular/genética , Modelos Animales de Enfermedad , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos no Esterificados , Hepatocitos/metabolismo , Humanos , Lipogénesis/genética , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fenotipo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Secretina/metabolismo , Regulación hacia Arriba
17.
Plant J ; 104(4): 1129-1141, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32808346

RESUMEN

Spontaneous mutants are mainly obtained from tissue culture or natural occurrences in plants. The traditional strategy for identifying spontaneously mutated genes is to continuously backcross these mutants to another variety and develop a near-isogenic F2 population for map-based cloning or bulked segregant analysis. However, this strategy is time-consuming. Here, we have developed a new method to efficiently accelerate the identification process. The chemical mutagen ethyl methanesulfonate was first used to treat the wild type of the spontaneous mutants to induce thousands of neutral mutations. An induced individual without any statistically significant phenotypic changes which was compared with the wild type was chosen as the neutral mutant. The spontaneous mutant was then crossed with the neutral mutant to develop a pseudo-near-isogenic F2 population in which only the induced neutral mutations and the causal mutation were segregated in the genome. This population ensures that the variation of the mutated trait is controlled only by the spontaneously mutated gene. Finally, after sequencing the neutral mutant and the mutant-type DNA pool of the F2 population the spontaneous mutation will be identified quickly by bioinformatics analysis. Using this method, two spontaneously mutated genes were identified successfully. Therefore, the neutral mutant-bridging method efficiently identifies spontaneously mutated genes in rice, and its value in other plants is discussed.


Asunto(s)
Oryza/genética , Polimorfismo de Nucleótido Simple/genética , Análisis Mutacional de ADN , Metanosulfonato de Etilo , Mutagénesis , Mutágenos , Mutación , Fenotipo
18.
Lab Invest ; 101(3): 328-340, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33462362

RESUMEN

Obesity-associated inflammation in white adipose tissue (WAT) is a causal factor of systemic insulin resistance; however, precisely how immune cells regulate WAT inflammation in relation to systemic insulin resistance remains to be elucidated. The present study examined a role for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in hematopoietic cells in regulating WAT inflammation and systemic insulin sensitivity. Male C57BL/6J mice were fed a high-fat diet (HFD) or low-fat diet (LFD) for 12 weeks and examined for WAT inducible 6-phosphofructo-2-kinase (iPFK2) content, while additional HFD-fed mice were treated with rosiglitazone and examined for PFKFB3 mRNAs in WAT stromal vascular cells (SVC). Also, chimeric mice in which PFKFB3 was disrupted only in hematopoietic cells and control chimeric mice were also fed an HFD and examined for HFD-induced WAT inflammation and systemic insulin resistance. In vitro, adipocytes were co-cultured with bone marrow-derived macrophages and examined for adipocyte proinflammatory responses and insulin signaling. Compared with their respective levels in controls, WAT iPFK2 amount in HFD-fed mice and WAT SVC PFKFB3 mRNAs in rosiglitazone-treated mice were significantly increased. When the inflammatory responses were analyzed, peritoneal macrophages from PFKFB3-disrputed mice revealed increased proinflammatory activation and decreased anti-inflammatory activation compared with control macrophages. At the whole animal level, hematopoietic cell-specific PFKFB3 disruption enhanced the effects of HFD feeding on promoting WAT inflammation, impairing WAT insulin signaling, and increasing systemic insulin resistance. In vitro, adipocytes co-cultured with PFKFB3-disrupted macrophages revealed increased proinflammatory responses and decreased insulin signaling compared with adipocytes co-cultured with control macrophages. These results suggest that PFKFB3 disruption in hematopoietic cells only exacerbates HFD-induced WAT inflammation and systemic insulin resistance.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Fosfofructoquinasa-2/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo Blanco/citología , Animales , Células Cultivadas , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Transducción de Señal
19.
Am J Pathol ; 190(5): 1018-1029, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142732

RESUMEN

Histamine binds to one of the four G-protein-coupled receptors expressed by large cholangiocytes and increases large cholangiocyte proliferation via histamine-2 receptor (H2HR), which is increased in patients with primary sclerosing cholangitis (PSC). Ranitidine decreases liver damage in Mdr2-/- (ATP binding cassette subfamily B member 4 null) mice. We targeted hepatic H2HR in Mdr2-/- mice using vivo-morpholino. Wild-type and Mdr2-/- mice were treated with mismatch or H2HR vivo-morpholino by tail vein injection for 1 week. Liver damage, mast cell (MC) activation, biliary H2HR, and histamine serum levels were studied. MC markers were determined by quantitative real-time PCR for chymase and c-kit. Intrahepatic biliary mass was detected by cytokeratin-19 and F4/80 to evaluate inflammation. Biliary senescence was determined by immunofluorescence and senescence-associated ß-galactosidase staining. Hepatic fibrosis was evaluated by staining for desmin, Sirius Red/Fast Green, and vimentin. Immunofluorescence for transforming growth factor-ß1, vascular endothelial growth factor-A/C, and cAMP/ERK expression was performed. Transforming growth factor-ß1 and vascular endothelial growth factor-A secretion was measured in serum and/or cholangiocyte supernatant. Treatment with H2HR vivo-morpholino in Mdr2-/--mice decreased hepatic damage; H2HR protein expression and MC presence or activation; large intrahepatic bile duct mass, inflammation and senescence; and fibrosis, angiogenesis, and cAMP/phospho-ERK expression. Inhibition of H2HR signaling ameliorates large ductal PSC-induced damage. The H2HR axis may be targeted in treating PSC.


Asunto(s)
Conductos Biliares/metabolismo , Colangitis Esclerosante/metabolismo , Colangitis Esclerosante/patología , Receptores Histamínicos H2/metabolismo , Animales , Conductos Biliares/patología , Mastocitos/metabolismo , Ratones , Ratones Noqueados , Morfolinos/farmacología , Receptores Histamínicos H2/genética
20.
Am J Pathol ; 190(11): 2185-2193, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32919978

RESUMEN

Chronic alcohol consumption is linked to the development of alcohol-associated liver disease (ALD). This disease is characterized by a clinical spectrum ranging from steatosis to hepatocellular carcinoma. Several cell types are involved in ALD progression, including hepatic macrophages. Kupffer cells (KCs) are the resident macrophages of the liver involved in the progression of ALD by activating pathways that lead to the production of cytokines and chemokines. In addition, KCs are involved in the production of reactive oxygen species. Reactive oxygen species are linked to the induction of oxidative stress and inflammation in the liver. These events are activated by the bacterial endotoxin, lipopolysaccharide, that is released from the gastrointestinal tract through the portal vein to the liver. Lipopolysaccharide is recognized by receptors on KCs that are responsible for triggering several pathways that activate proinflammatory cytokines involved in alcohol-induced liver injury. In addition, KCs activate hepatic stellate cells that are involved in liver fibrosis. Novel strategies to treat ALD aim at targeting Kupffer cells. These interventions modulate Kupffer cell activation or macrophage polarization. Evidence from mouse models and early clinical studies in patients with ALD injury supports the notion that pathogenic macrophage subsets can be successfully translated into novel treatment options for patients with this disease.


Asunto(s)
Comunicación Celular , Células Estrelladas Hepáticas/metabolismo , Macrófagos del Hígado/metabolismo , Hepatopatías Alcohólicas/metabolismo , Hígado/metabolismo , Animales , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/patología , Humanos , Macrófagos del Hígado/patología , Hígado/patología , Hepatopatías Alcohólicas/patología , Ratones , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA