Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur Radiol ; 33(5): 3478-3487, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36512047

RESUMEN

OBJECTIVES: Accurate detection of carotid plaque using ultrasound (US) is essential for preventing stroke. However, the diagnostic performance of junior radiologists (with approximately 1 year of experience in carotid US evaluation) is relatively poor. We thus aim to develop a deep learning (DL) model based on US videos to improve junior radiologists' performance in plaque detection. METHODS: This multicenter prospective study was conducted at five hospitals. CaroNet-Dynamic automatically detected carotid plaque from carotid transverse US videos allowing clinical detection. Model performance was evaluated using expert annotations (with more than 10 years of experience in carotid US evaluation) as the ground truth. Model robustness was investigated on different plaque characteristics and US scanning systems. Furthermore, its clinical applicability was evaluated by comparing the junior radiologists' diagnoses with and without DL-model assistance. RESULTS: A total of 1647 videos from 825 patients were evaluated. The DL model yielded high performance with sensitivities of 87.03% and 94.17%, specificities of 82.07% and 74.04%, and areas under the receiver operating characteristic curve of 0.845 and 0.841 on the internal and multicenter external test sets, respectively. Moreover, no significant difference in performance was noted among different plaque characteristics and scanning systems. Using the DL model, the performance of the junior radiologists improved significantly, especially in terms of sensitivity (largest increase from 46.3 to 94.44%). CONCLUSIONS: The DL model based on US videos corresponding to real examinations showed robust performance for plaque detection and significantly improved the diagnostic performance of junior radiologists. KEY POINTS: • The deep learning model based on US videos conforming to real examinations showed robust performance for plaque detection. • Computer-aided diagnosis can significantly improve the diagnostic performance of junior radiologists in clinical practice.


Asunto(s)
Aprendizaje Profundo , Humanos , Estudios Prospectivos , Arterias Carótidas/diagnóstico por imagen , Diagnóstico por Computador , Ultrasonografía
2.
J Ultrasound Med ; 42(6): 1235-1248, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36445006

RESUMEN

OBJECTIVES: Ultrasound (US) is important for diagnosing infant developmental dysplasia of the hip (DDH). However, the accuracy of the diagnosis depends heavily on expertise. We aimed to develop a novel automatic system (DDHnet) for accurate, fast, and robust diagnosis of DDH. METHODS: An automatic system, DDHnet, was proposed to diagnose DDH by analyzing static ultrasound images. A five-fold cross-validation experiment was conducted using a dataset containing 881 patients to verify the performance of DDHnet. In addition, a blind test was conducted on 209 patients (158 normal and 51 abnormal cases). The feasibility and performance of DDHnet were investigated by embedding it into ultrasound machines at low computational cost. RESULTS: DDHnet obtained reliable measurements and accurate diagnosis predictions. It reported an intra-class correlation coefficient (ICC) on α angle of 0.96 (95% CI: 0.93-0.97), ß angle of 0.97 (95% CI: 0.95-0.98), FHC of 0.98 (95% CI: 0.96-0.99) and PFD of 0.94 (95% CI: 0.90-0.96) in abnormal cases. DDHnet achieved a sensitivity of 90.56%, specificity of 100%, accuracy of 98.64%, positive predictive value (PPV) of 100%, and negative predictive value (NPV) of 98.44% for the diagnosis of DDH. For the measurement task on the US device, DDHnet took only 1.1 seconds to operate and complete, whereas the experienced senior expert required an average 41.4 seconds. CONCLUSIONS: The proposed DDHnet demonstrate state-of-the-art performance for all four indicators of DDH diagnosis. Fast and highly accurate DDH diagnosis is achievable through DDHnet, and is accessible under constrained computational resources.


Asunto(s)
Displasia del Desarrollo de la Cadera , Luxación Congénita de la Cadera , Lactante , Humanos , Inteligencia Artificial , Luxación Congénita de la Cadera/diagnóstico por imagen , Ultrasonografía/métodos , Valor Predictivo de las Pruebas
3.
Ren Fail ; 45(2): 2253933, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37724518

RESUMEN

MATERIALS AND METHODS: Relevant articles published up to 17 June 2023 were retrieved from five databases (Cochrane Library/Embase/PubMed/SinoMed/Web of Science). The pre-established inclusion and exclusion criteria determined the selection of publications. Pooled sensitivity (SEN), specificity (SPE), diagnostic odds ratio, likelihood ratio, and summary receiver operating characteristic curve were employed to assess the predictive value. The presence or potential sources of heterogeneity were investigated via subgroup and SEN analyses. RESULTS: Ten published and eligible studies (1559 cases) were included in the evaluation for the capability of [TIMP-2]*[IGFBP7] to predict the poor prognosis of AKI through the random effect model. Pooled SEN, SPE, diagnostic odds ratio, and positive and negative likelihood ratios were 0.82 (95% CI: 0.77-0.86, I2 = 53.4%), 0.64 (95% CI: 0.61-0.67, I2 = 88.3%), 14.06 (95% CI: 7.31-27.05, I2 = 55.0%), 2.859 (95% CI: 2.15-3.77, I2 = 80.7%), and 0.28 (95% CI: 0.20-0.40, I2 = 35.0%), respectively. The estimated area under the curve was 0.8864 (standard error: 0.0306), and the Q* was 0.7970 (standard error: 0.0299). The endpoints and cutoff values were the main causes of heterogeneity. CONCLUSIONS: [TIMP-2]*[IGFBP7] is possible in predicting poor prognosis of AKI, but it is better to be applied along with other indicators or clinical risk factors.


Asunto(s)
Lesión Renal Aguda , Inhibidor Tisular de Metaloproteinasa-2 , Humanos , Lesión Renal Aguda/diagnóstico , Bases de Datos Factuales , Oportunidad Relativa , Curva ROC
4.
Toxicol Ind Health ; 38(10): 665-674, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36062628

RESUMEN

Accumulating evidence has shown that bisphenol A (BPA) affects not only the growth and development of reproductive tissues but also disrupts meiosis. Meiotic disturbances lead to the formation of aneuploid gametes, resulting in the inability to conceive, pregnancy loss, and developmental disabilities in offspring. In recent years, increasing health concerns led manufacturers to seek BPA alternatives. In response, BPA analogs have been prepared and investigated in a variety of toxicity-related studies. Despite hopes that these analogs would prove less harmful than BPA, published data show that these alternatives continue to pose a significant risk to human health. In this study, we synthesized two less investigated BPA analogs with cyclic side chains, bisphenol Y (BPY) and bisphenol Z (BPZ), and evaluated their reprotoxic potential using Caenorhabditis elegans. C. elegans were cultured on nematode growth medium plates containing a 1 mM concentration of the dimethyl sulfoxide-dissolved bisphenols. The uptake of the chemicals was via two major routes: ingestion and cuticle diffusion. Following exposure, we evaluated fertilized egg count, germline apoptosis, and embryonic lethality-three parameters previously shown to reliably predict the reprotoxic potential of bisphenols in mammals. Our results indicated that both BPY and BPZ had a significant impact on fertility, resulting in increased germline apoptosis and a reduced number of progeny, without affecting the embryonic viability. After comparison with commercially relevant BPA and bisphenol S, our findings imply that BPA analogs with cyclic side chains, BPY and BPZ, adversely affect meiotic fidelity, resulting in diminished reproductive capacity.


Asunto(s)
Caenorhabditis elegans , Dimetilsulfóxido , Animales , Compuestos de Bencidrilo/toxicidad , Caenorhabditis elegans/fisiología , Ciclohexanos , Femenino , Humanos , Mamíferos , Fenoles , Embarazo
5.
Chembiochem ; 22(11): 2002-2009, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33594780

RESUMEN

Selenium-modified nucleosides are powerful tools to study the structure and function of nucleic acids and their protein interactions. The widespread application of 2-selenopyrimidine nucleosides is currently limited by low yields in established synthetic routes. Herein, we describe the optimization of the synthesis of 2-Se-uridine and 2-Se-thymidine derivatives by thermostable nucleoside phosphorylases in transglycosylation reactions using natural uridine or thymidine as sugar donors. Reactions were performed at 60 or 80 °C and at pH 9 under hypoxic conditions to improve the solubility and stability of the 2-Se-nucleobases in aqueous media. To optimize the conversion, the reaction equilibria in analytical transglycosylation reactions were studied. The equilibrium constants of phosphorolysis of the 2-Se-pyrimidines were between 5 and 10, and therefore differ by an order of magnitude from the equilibrium constants of any other known case. Hence, the thermodynamic properties of the target nucleosides are inherently unfavorable, and this complicates their synthesis significantly. A tenfold excess of sugar donor was needed to achieve 40-48 % conversion to the target nucleoside. Scale-up of the optimized conditions provided four Se-containing nucleosides in 6-40 % isolated yield, which compares favorably to established chemical routes.


Asunto(s)
Nucleósidos/biosíntesis , Pentosiltransferasa/metabolismo , Timidina/análogos & derivados , Biocatálisis , Glicosilación , Estructura Molecular , Compuestos de Organoselenio/química , Termodinámica , Timidina/biosíntesis , Timidina/química
6.
Inorg Chem ; 60(8): 5573-5589, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33826330

RESUMEN

The synthesis of urea fertilizer is currently the largest CO2 conversion process by volume in the industry. In this process, ammonium carbamate is an intermediate en route to urea formation. We determined that the tetraammineaquacopper(II) sulfate complex, [Cu(NH3)4(OH2)]SO4, catalyzed the formation of urea from ammonium carbamate in an aqueous solution. A urea yield of up to 18 ± 6% was obtained at 120 °C after 15 h and in a high-pressure metal reactor. No significant urea formed without the catalyst. The urea product was characterized by Fourier transform infrared (FT-IR), powder X-ray diffraction (PXRD), and quantitative 1H{13C} NMR analyses. The [Cu(NH3)4(OH2)]SO4 catalyst was then recovered at the end of the reaction in a 29% recovery yield, as verified by FT-IR, PXRD, and quantitative UV-vis spectroscopy. A precipitation method using CO2 was developed to recover and reuse 66 ± 3% of Cu(II). The catalysis mechanism was investigated by the density functional theory at the B3LYP/6-31G** level with an SMD continuum solvent model. We determined that the [Cu(NH3)4]2+ complex is likely an effective catalyst structure. The study of the catalysis mechanism suggests that the coordinated carbamate with [Cu(NH3)4]2+ is likely the starting point of the catalyzed reaction, and carbamic acid can be involved as a transient intermediate that facilitates the removal of an OH group. Our work has paved the way for the rational design of catalysts for urea synthesis from the greenhouse gas CO2.

7.
J Nanobiotechnology ; 19(1): 302, 2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600560

RESUMEN

BACKGROUND: Hypoxia is inherent character of most solid malignancies, leading to the failure of chemotherapy, radiotherapy and immunotherapy. Atovaquone, an anti-malaria drug, can alleviate tumor hypoxia by inhibiting mitochondrial complex III activity. The present study exploits atovaquone/albumin nanoparticles to improve bioavailability and tumor targeting of atovaquone, enhancing the efficacy of anti-PD-1 therapy by normalizing tumor hypoxia. METHODS: We prepared atovaquone-loaded human serum albumin (HSA) nanoparticles stabilized by intramolecular disulfide bonds, termed HSA-ATO NPs. The average size and zeta potential of HSA-ATO NPs were measured by particle size analyzer. The morphology of HSA-ATO NPs was characterized by transmission electron microscope (TEM). The bioavailability and safety of HSA-ATO NPs were assessed by animal experiments. Flow cytometry and ELISA assays were used to evaluate tumor immune microenvironment. RESULTS: Our data first verified that atovaquone effectively alleviated tumor hypoxia by inhibiting mitochondrial activity both in vitro and in vivo, and successfully encapsulated atovaquone in vesicle with albumin, forming HSA-ATO NPs of approximately 164 nm in diameter. We then demonstrated that the HSA-ATO NPs possessed excellent bioavailability, tumor targeting and a highly favorable biosafety profile. When combined with anti-PD-1 antibody, we observed that HSA-ATO NPs strongly enhanced the response of mice bearing tumor xenografts to immunotherapy. Mechanistically, HSA-ATO NPs promoted intratumoral CD8+ T cell recruitment by alleviating tumor hypoxia microenvironment, thereby enhancing the efficacy of anti-PD-1 immunotherapy. CONCLUSIONS: Our data provide strong evidences showing that HSA-ATO NPs can serve as safe and effective nano-drugs to enhance cancer immunotherapy by alleviating hypoxic tumor microenvironment.


Asunto(s)
Atovacuona , Nanopartículas/química , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Hipoxia Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Animales , Atovacuona/química , Atovacuona/farmacología , Línea Celular Tumoral , Células Cultivadas , Portadores de Fármacos/química , Inmunoterapia , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Smegmamorpha
8.
BMC Genomics ; 19(Suppl 10): 936, 2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-30598102

RESUMEN

BACKGROUND: The evolution of influenza A viruses leads to the antigenic changes. Serological diagnosis of the antigenicity is usually labor-intensive, time-consuming and not suitable for early-stage detection. Computational prediction of the antigenic relationship between emerging and old strains of influenza viruses using viral sequences can facilitate large-scale antigenic characterization, especially for those viruses requiring high biosafety facilities, such as H5 and H7 influenza A viruses. However, most computational models require carefully designed subtype-specific features, thereby being restricted to only one subtype. METHODS: In this paper, we propose a Context-FreeEncoding Scheme (CFreeEnS) for pairs of protein sequences, which encodes a protein sequence dataset into a numeric matrix and then feeds the matrix into a downstream machine learning model. CFreeEnS is not only free from subtype-specific selected features but also able to improve the accuracy of predicting the antigenicity of influenza. Since CFreeEnS is subtype-free, it is applicable to predicting the antigenicity of diverse influenza subtypes, hopefully saving the biologists from conducting serological assays for highly pathogenic strains. RESULTS: The accuracy of prediction on each subtype tested (A/H1N1, A/H3N2, A/H5N1, A/H9N2) is over 85%, and can be as high as 91.5%. This outperforms existing methods that use carefully designed subtype-specific features. Furthermore, we tested the CFreeEnS on the combined dataset of the four subtypes. The accuracy reaches 84.6%, much higher than the best performance 75.1% reported by other subtype-free models, i.e. regional band-based model and residue-based model, for predicting the antigenicity of influenza. Also, we investigate the performance of CFreeEnS when the model is trained and tested on different subtypes (i.e. transfer learning). The prediction accuracy using CFreeEnS is 84.3% when the model is trained on the A/H1N1 dataset and tested on the A/H5N1, better than the 75.2% using a regional band-based model. CONCLUSIONS: The CFreeEnS not only improves the prediction of antigenicity on datasets with only one subtype but also outperforms existing methods when tested on a combined dataset with four subtypes of influenza viruses.


Asunto(s)
Antígenos Virales/inmunología , Biología Computacional/métodos , Virus de la Influenza A/inmunología , Proteínas Virales/química , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Proteínas Virales/metabolismo
9.
BMC Genomics ; 19(Suppl 2): 88, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29764421

RESUMEN

BACKGROUND: Influenza viruses are undergoing continuous and rapid evolution. The fatal influenza A/H7N9 has drawn attention since the first wave of infections in March 2013, and raised more grave concerns with its increased potential to spread among humans. Experimental studies have revealed several host and virulence markers, indicating differential host binding preferences which can help estimate the potential of causing a pandemic. Here we systematically investigate the sequence pattern and structural characteristics of novel influenza A/H7N9 using computational approaches. RESULTS: The sequence analysis highlighted mutations in protein functional domains of influenza viruses. Molecular docking and molecular dynamics simulation revealed that the hemagglutinin (HA) of A/Taiwan/1/2017(H7N9) strain enhanced the binding with both avian and human receptor analogs, compared with the previous A/Shanghai/02/2013(H7N9) strain. The Molecular Mechanics - Poisson Boltzmann Surface Area (MM-PBSA) calculation revealed the change of residue-ligand interaction energy and detected the residues with conspicuous binding preference. CONCLUSION: The results are novel and specific to the emerging influenza A/Taiwan/1/2017(H7N9) strain compared with A/Shanghai/02/2013(H7N9). Its enhanced ability to bind human receptor analogs, which are abundant in the human upper respiratory tract, may be responsible for the recent outbreak. Residues showing binding preference were detected, which could facilitate monitoring the circulating influenza viruses.


Asunto(s)
Biología Computacional/métodos , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H7N9 del Virus de la Influenza A/fisiología , Mutación , Animales , Proteínas Aviares/metabolismo , Aves , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Interacciones Microbiota-Huesped , Humanos , Subtipo H7N9 del Virus de la Influenza A/clasificación , Subtipo H7N9 del Virus de la Influenza A/genética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Filogenia , Unión Proteica , Análisis de Secuencia de ARN/métodos , Proteínas Virales/química , Proteínas Virales/genética
10.
Nat Commun ; 15(1): 2342, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491027

RESUMEN

High-dimensional, spatially resolved analysis of intact tissue samples promises to transform biomedical research and diagnostics, but existing spatial omics technologies are costly and labor-intensive. We present Fluorescence In Situ Hybridization of Cellular HeterogeneIty and gene expression Programs (FISHnCHIPs) for highly sensitive in situ profiling of cell types and gene expression programs. FISHnCHIPs achieves this by simultaneously imaging ~2-35 co-expressed genes (clustered into modules) that are spatially co-localized in tissues, resulting in similar spatial information as single-gene Fluorescence In Situ Hybridization (FISH), but with ~2-20-fold higher sensitivity. Using FISHnCHIPs, we image up to 53 modules from the mouse kidney and mouse brain, and demonstrate high-speed, large field-of-view profiling of a whole tissue section. FISHnCHIPs also reveals spatially restricted localizations of cancer-associated fibroblasts in a human colorectal cancer biopsy. Overall, FISHnCHIPs enables fast, robust, and scalable cell typing of tissues with normal physiology or undergoing pathogenesis.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Ratones , Humanos , Hibridación Fluorescente in Situ/métodos , Perfilación de la Expresión Génica/métodos , Transcriptoma/genética
11.
Med Image Anal ; 92: 103061, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086235

RESUMEN

The Segment Anything Model (SAM) is the first foundation model for general image segmentation. It has achieved impressive results on various natural image segmentation tasks. However, medical image segmentation (MIS) is more challenging because of the complex modalities, fine anatomical structures, uncertain and complex object boundaries, and wide-range object scales. To fully validate SAM's performance on medical data, we collected and sorted 53 open-source datasets and built a large medical segmentation dataset with 18 modalities, 84 objects, 125 object-modality paired targets, 1050K 2D images, and 6033K masks. We comprehensively analyzed different models and strategies on the so-called COSMOS 1050K dataset. Our findings mainly include the following: (1) SAM showed remarkable performance in some specific objects but was unstable, imperfect, or even totally failed in other situations. (2) SAM with the large ViT-H showed better overall performance than that with the small ViT-B. (3) SAM performed better with manual hints, especially box, than the Everything mode. (4) SAM could help human annotation with high labeling quality and less time. (5) SAM was sensitive to the randomness in the center point and tight box prompts, and may suffer from a serious performance drop. (6) SAM performed better than interactive methods with one or a few points, but will be outpaced as the number of points increases. (7) SAM's performance correlated to different factors, including boundary complexity, intensity differences, etc. (8) Finetuning the SAM on specific medical tasks could improve its average DICE performance by 4.39% and 6.68% for ViT-B and ViT-H, respectively. Codes and models are available at: https://github.com/yuhoo0302/Segment-Anything-Model-for-Medical-Images. We hope that this comprehensive report can help researchers explore the potential of SAM applications in MIS, and guide how to appropriately use and develop SAM.


Asunto(s)
Diagnóstico por Imagen , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
12.
Front Microbiol ; 15: 1384991, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800755

RESUMEN

Introduction: Rapid identification of infected individuals through viral RNA or antigen detection followed by effective personal isolation is usually the most effective way to prevent the spread of a newly emerging virus. Large-scale detection involves mass specimen collection and transportation. For biosafety reasons, denaturing viral transport medium has been extensively used during the SARS-CoV-2 pandemic. However, the high concentrations of guanidinium isothiocyanate (GITC) in such media have raised issues around sufficient GITC supply and laboratory safety. Moreover, there is a lack of denaturing transport media compatible with SARS-CoV-2 RNA and antigen detection. Methods: Here, we tested whether supplementing media containing low concentrations of GITC with ammonium sulfate (AS) would affect the throat-swab detection of SARS-CoV-2 or a viral inactivation assay targeting coronavirus and other enveloped and non-enveloped viruses. The effect of adding AS to the media on RNA stability and its compatibility with SARS-CoV-2 antigen detection were also tested. Results and discussion: We found that adding AS to the denaturing transport media reduced the need for high levels of GITC, improved SARS-COV-2 RNA detection without compromising virus inactivation, and enabled the denaturing transport media compatible with SARS-CoV-2 antigen detection.

13.
Arch Med Res ; 54(4): 287-298, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37121791

RESUMEN

BACKGROUND: Thyroid hormones (active form T3) are naturally potent compounds that influence energy expenditure, cholesterol metabolism, and fat oxidation. T3 would be an effective anti-obesity drug if it would not be delivered to the heart and bones, which leads to serious side effects, such as cardiovascular and bone thyrotoxicity, muscle wasting, and so on. METHODS: In this study, we designed a targeted drug delivery system that is a glucagon-modified liposome to deliver T3 to the liver and adipose tissues. RESULTS: The liposomes exhibited excellent properties, including uniform nanoscale particle size, good physicochemical stability, and adequate drug release behavior. More importantly, the glucagon-modified liposomes were enriched in the liver, which minimized the undesired bone and cardiovascular thyrotoxicity of T3. Compared to the control group, T3-loading glucagon-modified liposomes could effectively decrease body weight, reverse hepatic steatosis, and correct hyperlipidemia and hyperglycemia in ob/ob mice, without the undesired cardiovascular and bone thyrotoxicity. CONCLUSION: These findings indicate that delivery of thyroid hormone by glucagon-modified liposomes may provide an effective strategy for anti-obesity therapy.


Asunto(s)
Glucagón , Liposomas , Ratones , Animales , Glucagón/metabolismo , Glucagón/farmacología , Glucagón/uso terapéutico , Liposomas/metabolismo , Liposomas/farmacología , Liposomas/uso terapéutico , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/farmacología , Hormonas Tiroideas/uso terapéutico , Obesidad/metabolismo , Peso Corporal , Hígado/metabolismo
14.
World J Pediatr ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38141111

RESUMEN

BACKGROUND: Biliary atresia (BA) is a rare fatal liver disease in children, and the aim of this study was to develop a method to diagnose BA early. METHODS: We determined serum levels of matrix metalloproteinase-7 (MMP-7), the results of 13 liver tests, and the levels of 20 bile acids, and integrated computational models were constructed to diagnose BA. RESULTS: Our findings demonstrated that MMP-7 expression levels, as well as the results of four liver tests and levels of ten bile acids, were significantly different between 86 BA and 59 non-BA patients (P < 0.05). The computational prediction model revealed that MMP-7 levels alone had a higher predictive accuracy [area under the receiver operating characteristic curve (AUC) = 0.966, 95% confidence interval (CI): 0.942, 0.989] than liver test results and bile acid levels. The AUC was 0.890 (95% CI 0.837, 0.943) for liver test results and 0.825 (95% CI 0.758, 0.892) for bile acid levels. Furthermore, bile levels had a higher contribution to enhancing the predictive accuracy of MMP-7 levels (AUC = 0.976, 95% CI 0.953, 1.000) than liver test results. The AUC was 0.983 (95% CI 0.962, 1.000) for MMP-7 levels combined with liver test results and bile acid levels. In addition, we found that MMP-7 levels were highly correlated with gamma-glutamyl transferase levels and the liver fibrosis score. CONCLUSION: The innovative integrated models based on a large number of indicators provide a noninvasive and cost-effective approach for accurately diagnosing BA in children. Video Abstract (MP4 142103 KB).

15.
Am J Cancer Res ; 11(10): 4866-4883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765297

RESUMEN

Glucocorticoids (GCs) are widely used in the treatment of various autoimmune and inflammatory diseases, including inflammatory bowel disease (IBD). However, the effect of GCs on the progression of colitis-associated colorectal cancer (CAC) has not been well explored. In this study, we first established a colorectal cancer model induced by azoxymethane and dextran sulfate sodium (AOM/DSS) and a colitis model induced by DSS in mice. Dexamethasone (DEX) was then administered at different periods of time to determine its effect on tumorigenesis and tumor progression. Meanwhile, body weight, stool property and fecal blood of mice were recorded. At the end of this study, the number and load of tumors were evaluated, and the expression of proteins associated with cell proliferation was analyzed. To evaluate the inflammation in colon, we detected the level of pro-inflammatory cytokine TNFα, and the mucosal infiltration of inflammatory cells. Our results revealed that AOM injection followed by three cycles of drinking water containing 1.5% DSS successfully induced multiple tumor formation in mouse colon and rectum. Both early and late DEX intervention suppressed tumor growth in mouse colorectum, and downregulated the expression of PCNA and cyclin D1. Moreover, DEX treatment significantly inhibited TNFα production, mucosal infiltration of inflammatory cells, and the activity of MAPK/JNK pathway, particularly early DEX intervention. However, we also found that DEX treatment deteriorated the general state of mouse manifested by greater loss of body weight and rectal bleeding. In summary, both early and late DEX interventions significantly ameliorate colonic inflammation and inhibit the progression of AOM/DSS-induced colorectal cancer, at least partly due to the inhibition of MAPK/JNK pathway. It is noteworthy that the deleterious effect on the general condition of mouse may limit the duration of GCs treatment.

16.
J Bioinform Comput Biol ; 18(1): 2040002, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32336247

RESUMEN

Influenza viruses are persistently threatening public health, causing annual epidemics and sporadic pandemics due to rapid viral evolution. Vaccines are used to prevent influenza infections but the composition of the influenza vaccines have to be updated regularly to ensure its efficacy. Computational tools and analyses have become increasingly important in guiding the process of vaccine selection. By constructing time-series training samples with splittings and embeddings, we develop a computational method for predicting suitable strains as the recommendation of the influenza vaccines using recurrent neural networks (RNNs). The Encoder-decoder architecture of RNN model enables us to perform sequence-to-sequence prediction. We employ this model to predict the prevalent sequence of the H3N2 viruses sampled from 2006 to 2017. The identity between our predicted sequence and recommended vaccines is greater than 98% and the Pepitope<0.2 indicates their antigenic similarity. The multi-step vaccine prediction further demonstrates the robustness of our method which achieves comparable results in contrast to single step prediction. The results show significant matches of the recommended vaccine strains to the circulating strains. We believe it would facilitate the process of vaccine selection and surveillance of seasonal influenza epidemics.


Asunto(s)
Biología Computacional/métodos , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Redes Neurales de la Computación , Proteínas Virales/inmunología , Epítopos , Humanos , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/virología , Análisis de Series de Tiempo Interrumpido , Tasa de Mutación
17.
BMC Med Genomics ; 13(1): 9, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31973709

RESUMEN

BACKGROUND: Influenza reassortment, a mechanism where influenza viruses exchange their RNA segments by co-infecting a single cell, has been implicated in several major pandemics since 19th century. Owing to the significant impact on public health and social stability, great attention has been received on the identification of influenza reassortment. METHODS: We proposed a novel computational method named HopPER (Host-prediction-based Probability Estimation of Reassortment), that sturdily estimates reassortment probabilities through host tropism prediction using 147 new features generated from seven physicochemical properties of amino acids. We conducted the experiments on a range of real and synthetic datasets and compared HopPER with several state-of-the-art methods. RESULTS: It is shown that 280 out of 318 candidate reassortants have been successfully identified. Additionally, not only can HopPER be applied to complete genomes but its effectiveness on incomplete genomes is also demonstrated. The analysis of evolutionary success of avian, human and swine viruses generated through reassortment across different years using HopPER further revealed the reassortment history of the influenza viruses. CONCLUSIONS: Our study presents a novel method for the prediction of influenza reassortment. We hope this method could facilitate rapid reassortment detection and provide novel insights into the evolutionary patterns of influenza viruses.


Asunto(s)
Bases de Datos Genéticas , Evolución Molecular , Genoma Viral , Virus de la Influenza A/genética , Gripe Humana/genética , Modelos Genéticos , Animales , Humanos , Porcinos
18.
Onco Targets Ther ; 13: 11183-11192, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33173310

RESUMEN

PURPOSE: Anaplastic thyroid cancer (ATC) is a kind of rare thyroid cancer with very poor prognosis. Doxorubicin has been approved in ATC treatment as a single agent, but monotherapy still shows no improvement of the total survival in advanced ATC. Lenvatinib was investigated with encouraging results in treating patients with radioiodine-refractory differentiated thyroid cancer (DTC). However, antitumor efficacy of combination therapy with lenvatinib and doxorubicin remains largely unclear. MATERIALS AND METHODS: The antitumor efficacy of combination therapy with lenvatinib and doxorubicin on ATC cell proliferation was assessed by the MTT assay and colony formation. Flow cytometry was employed to assess ATC cells' apoptosis and cell cycle arrest in response to combination therapy. Transwell assay was used to test the migration and invasion in response to combination therapy. Xenograft models were used to test its in vivo antitumor activity. RESULTS: Lenvatinib monotherapy was less effective than doxorubicin in treating ATC cell lines and xenograft model. The combination therapy of lenvatinib and doxorubicin significantly inhibited ATC cell proliferation and tumor growth in nude mice, and induced cell apoptosis and cell cycle arrest as compared to lenvatinib or doxorubicin monotherapy. CONCLUSION: Lenvatinib promotes the antitumor effect of doxorubicin in ATC cell and xenograft model. The lenvatinib/doxorubicin combination may be a potential candidate therapeutic approach for anaplastic thyroid cancer.

19.
Chem Asian J ; 15(4): 511-517, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-31985167

RESUMEN

The present research has demonstrated that selective C-S bond cleavages of dibenzothiophene and its derivatives are feasible by thia-Baeyer-Villiger type oxidation, i. e. the oxygen insertion process within a sulfoxide-carbon linkage, in the presence of porphyrin iron (III) and by ultraviolet irradiation originating from sunlight, high pressure Hg-lamp or residentially germicidal ultraviolet lamp under very mild conditions. This reaction with tert-butylhydroperoxide at 30.0 °C leads to dibenzo[1,2]oxathiin-6-oxide (PBS) in 83.2 % isolated yield or its hydrated products, 2-(2-hydroxyphenyl)-benzenesulfinic derivatives (HPBS) in near 100 % yield based HPLC data. PBS and HPBS are a type of biological products detected on the C-S bond cleavage step through various oxidative biodesulfurization (OBDS) pathways, and are useful synthetic intermediates and fine chemicals. These observations may contribute on understanding delicately molecular aspect of OBDS in the photosynthesis system, expanding the C-S cleavage chemistry of S-heterocyclic compounds and approaching toward biomemic desulfurization with respect to converting sulfur contaminants to chemically beneficial blocks as needed and performing under the ambient conditions.

20.
Int J Infect Dis ; 90: 84-96, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31669593

RESUMEN

BACKGROUND: This study compared the genomes of influenza viruses that caused mild infections among outpatients and severe infections among hospitalized patients in Singapore, and characterized their molecular evolution and receptor-binding specificity. METHODS: The complete genomes of influenza A/H1N1, A/H3N2 and B viruses that caused mild infections among outpatients and severe infections among inpatients in Singapore during 2012-2015 were sequenced and characterized. Using various bioinformatics approaches, we elucidated their evolutionary, mutational and structural patterns against the background of global and vaccine strains. RESULTS: The phylogenetic trees of the 8 gene segments revealed that the outpatient and inpatient strains overlapped with representative global and vaccine strains. We observed a cluster of inpatients with A/H3N2 strains that were closely related to vaccine strain A/Texas/50/2012(H3N2). Several protein sites could accurately discriminate between outpatient versus inpatient strains, with site 221 in neuraminidase (NA) achieving the highest accuracy for A/H3N2. Interestingly, amino acid residues of inpatient but not outpatient isolates at those sites generally matched the corresponding residues in vaccine strains, except at site 145 of hemagglutinin (HA). This would be especially relevant for future surveillance of A/H3N2 strains in relation to their antigenicity and virulence. Furthermore, we observed a trend in which the HA proteins of influenza A/H3N2 and A/H1N1 exhibited enhanced ability to bind both avian and human host cell receptors. In contrast, the binding ability to each receptor was relatively stable for the HA of influenza B. CONCLUSIONS: Overall, our findings extend our understanding of the molecular and structural evolution of influenza virus strains in Singapore within the global context of these dynamic viruses.


Asunto(s)
Betainfluenzavirus/genética , Evolución Molecular , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Adolescente , Adulto , Anciano , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hospitalización , Humanos , Gripe Humana/virología , Persona de Mediana Edad , Mutación , Neuraminidasa/genética , Pacientes Ambulatorios , Filogenia , Receptores Virales/química , Singapur , Proteínas Virales/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA