Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurophysiol ; 129(5): 1145-1156, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37042554

RESUMEN

Postoperative neurocognitive dysfunction (PND) is a common postoperative complication. Autophagy is correlated with the pathogenesis of PND. This study investigated the potential role of autophagy in the neuroprotection of dexmedetomidine (Dex) pretreatment in PND. The PND rat model was established by abdominal surgery. The cognitive function of rats was evaluated by Y-maze 3 days after surgery. Nissl staining assessed postoperative hippocampal damage. Immunofluorescence detected the expression of microglial activation (Iba-1) and autophagy-related protein (LC3B) in hippocampal tissues. Western blot detected the autophagy-related protein expression (Beclin 1, LC3B, and p62), proinflammatory cytokines, and the protein activation of the autophagy-related LKB1/AMPK/ULK-1 signaling pathway. RT-PCR quantified the expression of IL-1ß, TNF-α, and IL6. In this study, we found that Dex pretreatment improved spatial memory function impairment and reduced abdominal surgery-induced hippocampal tissue damage. Dex pretreatment significantly increased the expression of Beclin 1 and LC3 II/I and decreased the expression of p62 in the hippocampus after surgery. Furthermore, Dex effectively inhibited microglial activation and proinflammatory cytokines by enhancing autophagy in the hippocampus. Pretreatment with 3-MA, an autophagy inhibitor, significantly weakened the inhibitory effect of Dex on postoperative neuroinflammation. We further demonstrated that Dex suppressed surgery-induced neuroinflammation by activating the LKB1/AMPK/ULK-1 signaling pathway. In conclusion, our study indicated that Dex inhibited hippocampal neuroinflammation and ameliorated PND by enhancing autophagy after surgery in rats, which was related to the LKB1/AMPK/ULK-1 signaling pathway. These findings provide a potential therapeutic prospect for PND.NEW & NOTEWORTHY Dex inhibits hippocampal neuroinflammation and attenuates early cognitive impairment by enhancing autophagy following surgery in rats. Dex may protect postoperative cognitive function by activating the LKB1/AMPK/ULK-1 signaling pathway.


Asunto(s)
Disfunción Cognitiva , Dexmedetomidina , Complicaciones Cognitivas Postoperatorias , Ratas , Animales , Dexmedetomidina/metabolismo , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Beclina-1/metabolismo , Beclina-1/farmacología , Complicaciones Cognitivas Postoperatorias/tratamiento farmacológico , Citocinas , Hipocampo/metabolismo , Autofagia
2.
Mol Pain ; : 17448069221124920, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36065971

RESUMEN

AIMS: Osteoarthritis (OA), a chronic degenerative disease, leads to pain and loss of function. Existing treatments for OA pain have limited efficacy and show significant side effects. Dimethyl fumarate, a robust nuclear factor erythroid 2-related factor 2 (Nrf2) activator, could alleviate pain behaviors in chronic pain. This study aims to investigate the role of dimethyl fumarate in a rat model of OA and its underlying mechanisms. METHODS: We used von Frey filaments to assess the mechanical allodynia. Weight-bearing apparatus was employed to assess the hindlimb weight distribution. Western blot was employed to investigate the protein expressions of mitochondrial biogenesis markers. RT-qPCR was employed to examine the copy number of mitochondrial DNA (mtDNA). RESULTS: Dimethyl fumarate upregulated mechanical paw withdrawal threshold (MIA + Vehicle, 1.6 ± 0.13g [mean ± SEM]; MIA + DMF, 10.5 ± 0.96g; P < 0.0001). Hindlimb weight distribution was alao upregulated by dimethyl fumarate (MIA + Vehicle, 38.17 ± 0.72g; MIA + DMF, 43.59 ± 1.01g; P < 0.01). Besides, activation of Nrf2 remarkably upregulated the protein levels of PGC-1α (MIA + Vehicle, 0.69 ± 0.07; MIA + DMF, 1.08 ± 0.09; P = 0.0037), NRF1 (MIA + Vehicle, 0.69 ± 0.04; MIA + DMF, 1.00 ± 0.11; P = 0.0114), TFAM (MIA + Vehicle, 0.62 ± 0.11; MIA + DMF, 1.02 ± 0.12; P = 0.0147), and the copy number of mtDNA(MIA + Vehicle, 0.52 ± 0.05; MIA + DMF, 3.81 ± 0.21; P < 0.0001) Conclusions: Taken together, these results show that dimethyl fumarate alleviated pain-related behaviors in a rat model of OA through activation of Nrf2-induced mitochondrial biogenesis.

3.
J Neuroinflammation ; 19(1): 129, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35658977

RESUMEN

BACKGROUND: Neuropathic pain is a common and severely disabling state that affects millions of people worldwide. Microglial activation in the spinal cord plays a critical role in the pathogenesis of neuropathic pain. However, the mechanisms underlying spinal microglial activation during neuropathic pain remain incompletely understood. Here, we investigated the role of Dickkopf (DKK) 3 and its interplay with microglial activation in the spinal cord in neuropathic pain. METHODS: In this study, we investigated the effects of intrathecal injection of recombinant DKK3 (rDKK3) on mechanical allodynia and microglial activation in the spinal cord after spared nerve injury (SNI) in rats by western blot (WB), immunofluorescence (IF), quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA). RESULTS: We found that SNI induced a significant decrease in the levels of DKK3, Kremen-1 and Dishevelled-1 (DVL-1) and up-regulated the expression of phosphorylated apoptosis signal-regulating kinase 1 (p-ASK1), phosphorylated c-JUN N-terminal kinase (p-JNK), phosphorylated p38 (p-p38) in the spinal cord. Moreover, our results showed that exogenous intrathecal administration of rDKK3 inhibited expression of p-ASK1, p-JNK, p-p38, promoted the transformation of microglia from M1 type to M2 type, and decreased the production of pro-inflammatory cytokines compared to the rats of SNI + Vehicle. However, these effects were reversed by intrathecal administration of Kremen-1 siRNA or Dishevelled-1 (DVL-1) siRNA. CONCLUSIONS: These results suggest that DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation, at least partly, by the Kremen-1 and DVL-1 pathways.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Microglía , Neuralgia , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Hiperalgesia/metabolismo , Microglía/metabolismo , Neuralgia/metabolismo , Enfermedades Neuroinflamatorias , ARN Interferente Pequeño/metabolismo , Ratas , Médula Espinal/metabolismo
4.
Brain Behav Immun ; 102: 53-70, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35151829

RESUMEN

BACKGROUND: Our previous study indicated that reactive oxygen species (ROS) are critically involved in chronic pain. Sestrin2 (Sesn2), a novel stress-inducible protein, is evidenced to reduce the generation of ROS. The study examined the role of Sesn2 in osteoarthritis (OA) pain and delineated the underlying molecular mechanisms. METHODS: In the present study, we investigated the impact of Sesn2 on mitochondrial biogenesis in a rat model of OA pain. After adeno-associated viral (AAV)-Sesn2EGFP was injected for 14 days, OA was induced by intra-articular injection of monosodium iodoacetate (MIA). We assessed pain behaviors (weight-bearing asymmetry and paw withdrawal threshold) and explored possible mechanisms in the L4-6 spinal cord. RESULTS: Our results showed that overexpression of Sesn2 in the spinal cord alleviated pain behaviors in OA rats. Moreover, overexpression of Sesn2 increased the activity of AMP-activated protein kinase (AMPK) signaling and significantly restored mitochondrial biogenesis. Besides, Sesn2 overexpression inhibited the activation of astrocytes and microglia, and decreased the production of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the spinal cord of the OA pain rats. These effects were significantly reversed by an AMPK inhibitor. CONCLUSIONS: Collectively, these results suggest that Sesn2 overexpression ameliorates mechanical allodynia and weight-bearing asymmetry in OA rats via activation of AMPK/PGC-1α-mediated mitochondrial biogenesis in the spinal cord. Moreover, Sesn2 overexpression attenuates OA-induced neuroinflammation at least partly by activating AMPK signaling. Sesn2 may become an encouraging therapeutic strategy for OA pain relief and other disorders.


Asunto(s)
Dolor Crónico , Osteoartritis , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sestrinas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Enfermedades Neuroinflamatorias , Biogénesis de Organelos , Ratas , Especies Reactivas de Oxígeno/metabolismo
5.
Saudi Pharm J ; 30(6): 669-678, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35812144

RESUMEN

Background: Ischemia reperfusion (I/R) play an imperative role in the expansion of cardiovascular disease. Sinomenine (SM) has been exhibited to possess antioxidant, anticancer, anti-inflammatory, antiviral and anticarcinogenic properties. The aim of the study was scrutinized the cardioprotective effect of SM against I/R injury in rat. Methods: Rat were randomly divided into normal control (NC), I/R control and I/R + SM (5, 10 and 20 mg/kg), respectively. Ventricular arrhythmias, body weight and heart weight were estimated. Antioxidant, inflammatory cytokines, inflammatory mediators and plasmin system indicator were accessed. Results: Pre-treated SM group rats exhibited the reduction in the duration and incidence of ventricular fibrillation, ventricular ectopic beat (VEB) and ventricular tachycardia along with suppression of arrhythmia score during the ischemia (30 and 120 min). SM treated rats significantly (P < 0.001) altered the level of antioxidant parameters. SM treatment significantly (P < 0.001) repressed the level of creatine kinase MB (CK-MB), creatine kinase (CK) and troponin I (Tnl). SM treated rats significantly (P < 0.001) repressed the tissue factor (TF), thromboxane B2 (TXB2), plasminogen activator inhibitor 1 (PAI-1) and plasma fibrinogen (Fbg) and inflammatory cytokines and inflammatory mediators. Conclusion: Our result clearly indicated that SM plays anti-arrhythmia effect in I/R injury in the rats via alteration of oxidative stress and inflammatory reaction.

6.
Neurobiol Learn Mem ; 182: 107463, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34015440

RESUMEN

Growing evidences indicate that neuropathic pain is frequently accompanied with cognitive impairments, which aggravate the decrease in the quality of life of chronic pain patients. Furthermore, it has been shown that the activation of Glucagon-like-peptide-1receptor (GLP-1R) improved memory deficit in multiple diseases, including Alzheimer's disease (AD), stroke. However, whether GLP-1R activation could improve memory impairment induced by neuropathic pain and the mechanisms underlying the effect of the activation of GLP-1R on memory protection have not yet been established. The spared nerve injury (SNI) model was established as a kind of neuropathic pain. And novel-object recognition memory (hippocampus-dependent memory) was tested by the novel object recognition test (NORT). The expression levels of GLP-1, GLP-1R, adenosine monophosphate-activated protein kinase (AMPK), p-AMPKThr172, nuclear factor κ B p65 (NF-κB p65), interleukin-1beta (IL-1ß), IL-1ß p17 (mature IL-1ß), tumor necrosis factor-alpha (TNF-α) and the synaptic proteins were tested in the murine hippocampus with memory deficits caused by neuropathic pain. Then, exenatide acetate (Ex-4, a GLP-1R agonist), exendin (9-39) (Ex(9-39), a GLP-1R antagonist) and Compound C dihydrochloride (CC, an AMPK inhibitor) were used to test the effects of the activation of GLP-1R in the mice with neuropathic pain. First, we uncovered that neuropathic pain could inhibit GLP-1/GLP-R axis, disturb inflammatory signaling pathway, increase the expression of IL-1ß, IL-1ß p17 and TNF-α, downregulate the synaptic proteins (postsynaptic density protein 95 (PSD95) and Arc). Subsequently, we reported that Ex-4 treatment could improve recognition memory impairment, increase the ratio of p-AMPKThr172/AMPK, inhibit the phosphorylation NF-κB p65 and decrease the expression of IL-1ß, IL-1ß p17 and TNF-α, upregulate the levels of PSD95 and Arc. Moreover, we found that Ex(9-39) and CC treatment could abrogate the memory protection of activation of GLP-1R in mice with neuropathic pain. The results indicated that the activation of GLP-1R could improve recognition memory impairment via regulating AMPK/NF-κB pathway, improving neuroinflammation, reversing the decreased level of synaptic proteins in neuropathic pain mice.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP/efectos de los fármacos , Exenatida/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipocampo/efectos de los fármacos , Neuralgia/metabolismo , Reconocimiento en Psicología/efectos de los fármacos , Factor de Transcripción ReIA/efectos de los fármacos , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Animales , Dolor Crónico/metabolismo , Dolor Crónico/fisiopatología , Modelos Animales de Enfermedad , Péptido 1 Similar al Glucagón/efectos de los fármacos , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Hipocampo/metabolismo , Interleucina-1beta/efectos de los fármacos , Interleucina-1beta/metabolismo , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Ratones , Neuralgia/fisiopatología , Enfermedades Neuroinflamatorias/metabolismo , Prueba de Campo Abierto , Fragmentos de Péptidos/farmacología , Traumatismos de los Nervios Periféricos , Nervio Ciático/cirugía , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
7.
Int J Med Sci ; 18(5): 1198-1206, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33526981

RESUMEN

Rationale: Early invasive ventilation may improve outcomes for critically ill patients with COVID-19. The objective of this study is to explore risk factors for 28-day mortality of COVID-19 patients receiving invasive ventilation. Methods: 74 consecutive adult invasively ventilated COVID-19 patients were included in this retrospective study. The demographic and clinical data were compared between survivors and non-survivors, and Cox regression analysis was used to explore risk factors for 28-day mortality. The primary outcome was 28-day mortality after initiation of invasive ventilation. Secondary outcome was the time from admission to intubation. Results: Of 74 patients with COVID-19, the median age was 68.0 years, 53 (71.6%) were male, 47 (63.5%) had comorbidities with hypertension, and diabetes commonly presented. The most frequent symptoms were fever and dyspnea. The median time from hospital admission to intubation was similar in survivors and non-survivors (6.5 days vs. 5.0 days). The 28-day mortality was 81.1%. High Sequential Organ Failure Assessment (SOFA) score (hazard ratio [HR], 1.54; 95% confidence interval [CI], 1.23-1.92; p < 0.001) and longer time from hospital admission to intubation (HR, 2.41; 95% CI, 1.15-5.07; p = 0.020) were associated with 28-day mortality in invasively ventilated COVID-19 patients. Conclusions: The mortality of invasively ventilated COVID-19 patients was particularly striking. Patients with high SOFA score and receiving delayed invasive ventilation were at high risk of mortality.


Asunto(s)
COVID-19/mortalidad , Enfermedad Crítica/mortalidad , Respiración Artificial/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/terapia , China/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo
8.
Acta Pharmacol Sin ; 41(8): 1041-1048, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32203087

RESUMEN

Paclitaxel-induced neuropathic pain (PINP) is refractory to currently used analgesics. Previous studies show a pivotal role of oxidative stress in PINP. Because the nuclear factor erythroid-2-related factor 2 (Nrf2) has been considered as the critical regulator of endogenous antioxidant defense, we here explored whether activation of Nrf2 could attenuate PINP. A rat model of PINP was established by intraperitoneal injection of paclitaxel (2 mg/kg) every other day with a final cumulative dose of 8 mg/kg. Hind paw withdrawal thresholds (PWTs) in response to von Frey filament stimuli were used to assess mechanical allodynia. We showed that a single dose of Nrf2 activator, oltipraz (10, 50, and 100 mg/kg), dose-dependently attenuated established mechanical allodynia, whereas repeated injection of oltipraz (100 mg· kg-1· d-1, i.p. from d 14 to d 18) almost abolished the mechanical allodynia in PINP rats. The antinociceptive effect of oltipraz was blocked by pre-injection of Nrf2 inhibitor trigonelline (20 mg/kg, i.p.). Early treatment with oltipraz (100 mg· kg-1· d-1, i.p. from d 0 to d 6) failed to prevent the development of the PINP, but delayed its onset. Western blot and immunofluorescence analysis revealed that the expression levels of Nrf2 and HO-1 were significantly upregulated in the spinal cord of PINP rats. Repeated injection of oltipraz caused further elevation of the expression levels of Nrf2 and HO-1 in the spinal cord of PINP rats, which was reversed by pre-injection of trigonelline. These results demonstrate that oltipraz ameliorates PINP via activating Nrf2/HO-1-signaling pathway in the spinal cord.


Asunto(s)
Analgésicos , Hiperalgesia , Factor 2 Relacionado con NF-E2 , Neuralgia , Pirazinas , Tionas , Tiofenos , Animales , Ratas , Alcaloides/farmacología , Analgésicos/uso terapéutico , Hemo Oxigenasa (Desciclizante)/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/prevención & control , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/prevención & control , Paclitaxel , Pirazinas/uso terapéutico , Médula Espinal/metabolismo , Tionas/uso terapéutico , Tiofenos/uso terapéutico , Regulación hacia Arriba/efectos de los fármacos , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores
9.
Biochem Biophys Res Commun ; 510(1): 97-103, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30661787

RESUMEN

SRPIN340, a selective serine-arginine protein kinase 1/2 (SRPK1/2) inhibitor, has been shown to have antiviral and anti-angiogenesis effects. However, its role in the heart is unknown. The present study explored the role of SRPIN340 in myocardial protection and the related mechanisms. During challenge with H2O2, cardiomyocytes (CMs) pretreated with SRPIN340 showed strikingly more injury tolerance, which was manifested as reduced lactate dehydrogenase (LDH) release and lower apoptotic index. Further research showed that SRPIN340 activated AKT under basal conditions, and AKT inhibition abolished the protective effects of SRPIN340 treatment during H2O2 stress. The protective effect of SRPIN340 was also demonstrated in perfused rat hearts subjected to ischemia/reperfusion (I/R). Collectively, our results reveal the beneficial effects of SRPIN340 against H2O2-induced oxidative damage in CMs and I/R-induced injury in a Langendorff heart model, supporting a potential application of SRPIN340 in the clinically relevant context of reperfusion. The effectiveness of SRPIN340 may be attributed to AKT signal activation.


Asunto(s)
Miocardio , Niacinamida/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Piperidinas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Corazón/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Daño por Reperfusión Miocárdica/prevención & control , Niacinamida/farmacología , Niacinamida/uso terapéutico , Piperidinas/uso terapéutico , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal
10.
Pharmacol Res ; 147: 104339, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31276771

RESUMEN

Cancer-induced bone pain (CIBP) remains a major challenge in patients suffering from bone metastases because of the complex mechanisms and unsatisfactory treatments. Emerging evidence have shown that activation of inflammasomes contribute to the development of inflammatory and neuropathic pain. However, the role of spinal inflammasomes in CIBP remains unclear. In the present study, we explored the specific cellular mechanisms of NLRP3 inflammasome in the process of CIBP in rats. MCC950 is a small molecule inhibitor of the NLRP3 inflammasome that exhibits remarkable activity in inflammatory diseases. Our behavioral results confirmed that both single and persistent treatment with MCC950 markedly attenuated CIBP-related mechanical allodynia. The expression of NLRP3 inflammasome, including NLRP3, ASC, Caspase-1, were significantly increased in a time-dependent manner. Furthermore, spinal IL-1ß, cleaved by cysteine-aspartic acid protease, was upregulated in this study. Chronic administration with MCC950 restored the protein expression of NLRP3 inflammasome and significantly suppressed the upregulation of IL-1ß. Spinal NLRP3 inflammasome might be a novel therapeutic target for treatment of CIBP.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Dolor en Cáncer/tratamiento farmacológico , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Dolor Musculoesquelético/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Sulfonas/uso terapéutico , Animales , Neoplasias Óseas/complicaciones , Neoplasias Óseas/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Dolor en Cáncer/metabolismo , Línea Celular Tumoral , Femenino , Furanos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Hiperalgesia/metabolismo , Indenos , Interleucina-1beta/metabolismo , Dolor Musculoesquelético/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Sulfonamidas , Sulfonas/farmacología
11.
Pharmacol Res ; 148: 104385, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31400402

RESUMEN

Ischemia-reperfusion (I/R) injury is accompanied with high morbidity and mortality and has seriously negative social and economic influences. Unfortunately, few effective therapeutic strategies are available to improve its outcome. Berberine is a natural medicine possessing multiple beneficial biological activities. Emerging evidence indicates that berberine has potential protective effects against I/R injury in brain, heart, kidney, liver, intestine and testis. However, up-to-date review focusing on the beneficial role of berberine against I/R injury is not yet available. In this paper, results from animal models and clinical studies are concisely presented and its mechanisms are discussed. We found that berberine ameliorates I/R injury in animal models via its anti-oxidant, anti-apoptotic and anti-inflammatory effects. Moreover, berberine also attenuates I/R injury by suppressing endoplasmic reticulum stress and promoting autophagy. Additionally, regulation of periphery immune system may also contributes to the beneficial effect of berberine against I/R injury. Although clinical evidence is limited, the current studies indicate that berberine may attenuate I/R injury via inhibiting excessive inflammatory response in patients. Collectively, berberine might be used as an alternative therapeutic strategy for the management of I/R injury.


Asunto(s)
Berberina/farmacología , Berberina/uso terapéutico , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Humanos , Modelos Animales , Transducción de Señal/efectos de los fármacos
12.
Mol Pain ; 14: 1744806918793232, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30027795

RESUMEN

Cancer-induced bone pain is one of the most severe types of pathological pain, which often occurs in patients with advanced prostate, breast, and lung cancer. It is of great significance to improve the therapies of cancer-induced bone pain due to the opioids' side effects including addiction, sedation, pruritus, and vomiting. Sinomenine, a traditional Chinese medicine, showed obvious analgesic effects on a rat model of chronic inflammatory pain, but has never been proven to treat cancer-induced bone pain. In the present study, we investigated the analgesic effect of sinomenine after tumor cell implantation and specific cellular mechanisms in cancer-induced bone pain. Our results indicated that single administration of sinomenine significantly and dose-dependently alleviated mechanical allodynia in rats with cancer-induced bone pain and the effect lasted for 4 h. After tumor cell implantation, the protein levels of phosphorylated-Janus family tyrosine kinase 2 (p-JAK2), phosphorylated-signal transducers and activators of transcription 3 (p-STAT3), phosphorylated-Ca2+/calmodulin-dependent protein kinase II (p-CAMKII), and phosphorylated-cyclic adenosine monophosphate response element-binding protein (p-CREB) were persistently up-regulated in the spinal cord horn. Chronic intraperitoneal treatment with sinomenine markedly suppressed the activation of microglia and effectively inhibited the expression of JAK2/STAT3 and CAMKII/CREB signaling pathways. We are the first to reveal that up-regulation of microglial JAK2/STAT3 pathway are involved in the development and maintenance of cancer-induced bone pain. Moreover, our investigation provides the first evidence that sinomenine alleviates cancer-induced bone pain by inhibiting microglial JAK2/STAT3 and neuronal CAMKII/CREB cascades.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Dolor en Cáncer/tratamiento farmacológico , Janus Quinasa 2/metabolismo , Microglía/efectos de los fármacos , Morfinanos/farmacología , Neuronas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Proteína de Unión a CREB/metabolismo , Proteínas de Unión al Calcio/metabolismo , Dolor en Cáncer/etiología , Dolor en Cáncer/patología , Carcinoma 256 de Walker/complicaciones , Modelos Animales de Enfermedad , Femenino , Microglía/metabolismo , Morfinanos/uso terapéutico , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Médula Espinal/patología
13.
Pharmacol Res ; 134: 305-310, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30042091

RESUMEN

Chronic pain remains to be a clinical challenge due to insufficient therapeutic strategies. Minocycline is a member of the tetracycline class of antibiotics, which has been used in clinic for decades. It is frequently reported that minocycline may has many non-antibiotic properties, among which is its anti-nociceptive effect. The results from our lab and others suggest that minocycline exerts strong analgesic effect in animal models of chronic pain including visceral pain, chemotherapy-induced periphery neuropathy, periphery injury induced neuropathic pain, diabetic neuropathic pain, spinal cord injury, inflammatory pain and bone cancer pain. In this review, we summarize the mechanisms underlying the analgesic effect of minocycline in preclinical studies. Due to a good safety record when used chronically, minocycline may become a promising therapeutic strategy for chronic pain in clinic.


Asunto(s)
Analgésicos/uso terapéutico , Sistema Nervioso Central/efectos de los fármacos , Dolor Crónico/tratamiento farmacológico , Minociclina/uso terapéutico , Analgésicos/efectos adversos , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Sistema Nervioso Central/fisiopatología , Dolor Crónico/metabolismo , Dolor Crónico/patología , Dolor Crónico/fisiopatología , Modelos Animales de Enfermedad , Humanos , Minociclina/efectos adversos , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/metabolismo , Fibras Nerviosas/patología , Transmisión Sináptica/efectos de los fármacos
14.
J Pharmacol Exp Ther ; 363(2): 176-183, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28855373

RESUMEN

Chronic pain, often defined as any pain lasting more than 3 months, is poorly managed because of its multifaceted and complex mechanisms. Calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine kinase that plays a fundamental role in synaptic plasticity, learning, and memory. Recent emerging evidence demonstrates increased expression and activity of CaMKII in the spinal cord and dorsal root ganglia of various chronic pain models. Moreover, our previous studies also find that inhibiting CaMKII could attenuate inflammatory pain and neuropathic pain. In this review, we provide evidence for the involvement of CaMKII in the initiation and development of chronic pain, including neuropathic pain, bone cancer pain, and inflammatory pain. Novel CaMKII inhibitors with potent inhibitory effect and high specificity may be alternative therapeutic strategies for the management of chronic pain in the future.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Dolor Crónico/enzimología , Dolor Crónico/patología , Animales , Neoplasias Óseas/complicaciones , Dolor Crónico/etiología , Humanos , Neuralgia/enzimología , Neuralgia/patología
15.
Brain Behav Immun ; 60: 161-173, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27742579

RESUMEN

Major histocompatibility class II (MHC II)-specific activation of CD4+ T helper cells generates specific and persistent adaptive immunity against tumors. Emerging evidence demonstrates that MHC II is also involved in basic pain perception; however, little is known regarding its role in the development of cancer-induced bone pain (CIBP). In this study, we demonstrate that MHC II expression was markedly induced on the spinal microglia of CIBP rats in response to STAT1 phosphorylation. Mechanical allodynia was ameliorated by either pharmacological or genetic inhibition of MHC II upregulation, which was also attenuated by the inhibition of pSTAT1 and pERK but was deteriorated by intrathecal injection of IFNγ. Furthermore, inhibition of ERK signaling decreased the phosphorylation of STAT1, as well as the production of MHC II in vivo and in vitro. These findings suggest that STAT1 contributes to bone cancer pain as a downstream mediator of ERK signaling by regulating MHC II expression in spinal microglia.


Asunto(s)
Neoplasias Óseas/metabolismo , Microglía/metabolismo , Factor de Transcripción STAT1/metabolismo , Médula Espinal/metabolismo , Animales , Dolor en Cáncer/metabolismo , Femenino , Hiperalgesia/metabolismo , Inyecciones Espinales/métodos , Sistema de Señalización de MAP Quinasas/fisiología , Ratas Sprague-Dawley
16.
J Neuroinflammation ; 13(1): 141, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27267059

RESUMEN

Interleukin-6 is an inflammatory cytokine with wide-ranging biological effects. It has been widely demonstrated that neuroinflammation plays a critical role in the development of pathological pain. Recently, various pathological pain models have shown elevated expression levels of interleukin-6 and its receptor in the spinal cord and dorsal root ganglia. Additionally, the administration of interleukin-6 could cause mechanical allodynia and thermal hyperalgesia, and an intrathecal injection of anti-interleukin-6 neutralizing antibody alleviated these pain-related behaviors. These studies indicated a pivotal role of interleukin-6 in pathological pain. In this review, we summarize the recent progress in understanding the roles and mechanisms of interleukin-6 in mediating pathological pain associated with bone cancer, peripheral nerve injury, spinal cord injury, chemotherapy-induced peripheral neuropathy, complete Freund's adjuvant injection, and carrageenan injection. Understanding and regulating interleukin-6 could be an interesting lead to novel therapeutic strategies for pathological pain.


Asunto(s)
Interleucina-6/fisiología , Dimensión del Dolor/métodos , Dolor/inducido químicamente , Dolor/metabolismo , Animales , Humanos , Interleucina-6/toxicidad , Dolor/patología , Dimensión del Dolor/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
17.
Acta Pharmacol Sin ; 37(6): 753-62, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27157092

RESUMEN

AIM: To investigate the mechanisms underlying the anti-nociceptive effect of minocycline on bone cancer pain (BCP) in rats. METHODS: A rat model of BCP was established by inoculating Walker 256 mammary carcinoma cells into tibial medullary canal. Two weeks later, the rats were injected with minocycline (50, 100 µg, intrathecally; or 40, 80 mg/kg, ip) twice daily for 3 consecutive days. Mechanical paw withdrawal threshold (PWT) was used to assess pain behavior. After the rats were euthanized, spinal cords were harvested for immunoblotting analyses. The effects of minocycline on NF-κB activation were also examined in primary rat astrocytes stimulated with IL-1ß in vitro. RESULTS: BCP rats had marked bone destruction, and showed mechanical tactile allodynia on d 7 and d 14 after the operation. Intrathecal injection of minocycline (100 µg) or intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced mechanical tactile allodynia. Furthermore, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of GFAP (astrocyte marker) and PSD95 in spinal cord. Moreover, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of NF-κB, p-IKKα and IκBα in spinal cord. In IL-1ß-stimulated primary rat astrocytes, pretreatment with minocycline (75, 100 µmol/L) significantly inhibited the translocation of NF-κB to nucleus. CONCLUSION: Minocycline effectively alleviates BCP by inhibiting the NF-κB signaling pathway in spinal astrocytes.


Asunto(s)
Antibacterianos/uso terapéutico , Astrocitos/efectos de los fármacos , Neoplasias Óseas/complicaciones , Dolor en Cáncer/tratamiento farmacológico , Minociclina/uso terapéutico , FN-kappa B/inmunología , Médula Espinal/efectos de los fármacos , Analgésicos/uso terapéutico , Animales , Astrocitos/inmunología , Astrocitos/patología , Neoplasias Óseas/inmunología , Neoplasias Óseas/patología , Dolor en Cáncer/complicaciones , Dolor en Cáncer/inmunología , Dolor en Cáncer/patología , Línea Celular Tumoral , Femenino , Hiperalgesia/complicaciones , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/inmunología , Hiperalgesia/patología , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Médula Espinal/citología , Médula Espinal/inmunología , Médula Espinal/patología
18.
Trends Pharmacol Sci ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39019763

RESUMEN

Transient receptor potential melastatin (TRPM) channels have emerged as potential therapeutic targets for cerebral ischemia-reperfusion (I/R) injury. We highlight recent findings on the involvement of TRPM channels in oxidative stress, mitochondrial dysfunction, inflammation, and calcium overload. We also discuss the challenges and future directions in targeting TRPM channels for cerebral I/R injury.

19.
Curr Neuropharmacol ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38379403

RESUMEN

Many neurological diseases can lead to cognitive impairment in patients, which includes dementia and mild cognitive impairment and thus create a heavy burden both to their families and public health. Due to the limited effectiveness of medications in treating cognitive impairment, it is imperative to develop alternative treatments. Electroacupuncture (EA), a required method for Traditional Chinese Medicine, has the potential treatment of cognitive impairment. However, the molecular mechanisms involved have not been fully elucidated. Considering the current research status, preclinical literature published within the ten years until October 2022 was systematically searched through PubMed, Web of Science, MEDLINE, Ovid, and Embase. By reading the titles and abstracts, a total of 56 studies were initially included. It is concluded that EA can effectively ameliorate cognitive impairment in preclinical research of neurological diseases and induce potentially beneficial changes in molecular pathways, including Alzheimer's disease, vascular cognitive impairment, chronic pain, and Parkinson's disease. Moreover, EA exerts beneficial effects through the same or diverse mechanisms for different disease types, including but not limited to neuroinflammation, neuronal apoptosis, neurogenesis, synaptic plasticity, and autophagy. However, these findings raise further questions that need to be elucidated. Overall, EA therapy for cognitive impairment is an area with great promise, even though more research regarding its detailed mechanisms is warranted.

20.
Biochem Pharmacol ; 222: 116053, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38354958

RESUMEN

Cancer-induced bone pain (CIBP) stands out as one of the most challenging issues in clinical practice due to its intricate and not fully elucidated pathophysiological mechanisms. Existing evidence has pointed toward the significance of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) down-regulation in contributing to pain behaviors in various rodent models of neuropathic pain. In our current study, we aimed to investigate the role of PGC-1α in CIBP. Our results unveiled a reduction in PGC-1α expression within the spinal cord of CIBP rats, particularly in GABAergic interneurons. Notably, intrathecal administration of the PGC-1α activator ZLN005 suppressed the loss of spinal GABAergic interneurons. This suppression was achieved by inhibiting caspase-3-mediated apoptosis, ultimately leading to the alleviation of mechanical allodynia in CIBP rats. Further exploration into the mechanism revealed that PGC-1α activation played a pivotal role in mitigating ATP depletion and reactive oxygen species accumulation linked to mitochondrial dysfunction. This was achieved through the restoration of mitochondrial biogenesis and the activation of the SIRT3-SOD2 pathway. Impressively, the observed effects were prominently reversed upon the application of SR18292, a specific PGC-1α inhibitor. In conclusion, our findings strongly suggest that PGC-1α activation acts as a potent inhibitor of apoptosis in spinal GABAergic interneurons. This inhibition is mediated by the improvement of mitochondrial function, facilitated in part through the enhancement of mitochondrial biogenesis and the activation of the SIRT3-SOD2 pathway. The results of our study shed light on potential therapeutic avenues for addressing CIBP.


Asunto(s)
Neoplasias , Sirtuina 3 , Ratas , Animales , Sirtuina 3/metabolismo , Apoptosis , Interneuronas/metabolismo , Dolor/tratamiento farmacológico , Dolor/etiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA