Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(10): 4474-4481, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38408891

RESUMEN

Transforming CO2 into valuable materials is an important reaction in catalysis, especially because CO2 concentrations in the atmosphere have been growing steadily due to extensive fossil fuel usage. From an environmental perspective, reduction of CO2 to valuable materials should be catalyzed by an environmentally benign catalyst and avoid the use of heavy transition-metal ions. In this work, we present a computational study into a novel iron(I) porphyrin catalyst for CO2 reduction, namely, with a tetraphenylporphyrin ligand and analogues. In particular, we investigated iron(I) tetraphenylporphyrin with one of the meso-phenyl groups substituted with o-urea, p-urea, or o-2-amide groups. These substituents can provide hydrogen-bonding interactions in the second coordination sphere with bound ligands and assist with proton relay. Furthermore, our studies investigated bicarbonate and phenol as stabilizers and proton donors in the reaction mechanism. Potential energy landscapes for double protonation of iron(I) porphyrinate with bound CO2 are reported. The work shows that the bicarbonate bridges the urea/amide groups to the CO2 and iron center and provides a tight bonding pattern with strong hydrogen-bonding interactions that facilitates easy proton delivery and reduction of CO2. Specifically, bicarbonate provides a low-energy proton shuttle mechanism to form CO and water efficiently. Furthermore, the o-urea group locks bicarbonate and CO2 in a tight orientation and helps with ideal proton transfer, while there is more mobility and lesser stability with an o-amide group in that position instead. Our calculations show that the o-urea group leads to reduction in proton-transfer barriers, in line with experimental observation. We then applied electric-field-effect calculations to estimate the environmental effects on the two proton-transfer steps in the reaction. These calculations describe the perturbations that enhance the driving forces for the proton-transfer steps and have been used to make predictions about how the catalysts can be further engineered for more enhanced CO2 reduction processes.

2.
Chemistry ; 29(63): e202302832, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37694535

RESUMEN

CO2 utilization is an important process in the chemical industry with great environmental power. In this work we show how CO2 and H2 can be reacted to form methanol on an iron(II) center and highlight the bottlenecks for the reaction and what structural features of the catalyst are essential for efficient turnover. The calculations predict the reactions to proceed through three successive reaction cycles that start with heterolytic cleavage of H2 followed by sequential hydride and proton transfer processes. The H2 splitting process is an endergonic process and hence high pressures will be needed to overcome this step and trigger the hydrogenation reaction. Moreover, H2 cleavage into a hydride and proton requires a metal to bind hydride and a nearby source to bind the proton, such as an amide or pyrazolyl group, which the scorpionate ligand used here facilitates. As such the computations highlight the non-innocence of the ligand scaffold through proton shuttle from H2 to substrate as an important step in the reaction mechanism.

3.
Phys Chem Chem Phys ; 25(32): 21416-21427, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37534596

RESUMEN

Heterogenisation of homogeneous catalysts onto solid supports represents a potential strategy to make the homogeneous catalytic function recyclable and reuseable. Yet, it is usually the case that immobilised catalysts have much lower catalytic activity than their homogeneous counterpart. In addition, the presence of a solid interface introduces a higher degree of complexity by modulating solid/fluid interactions, which can often influence adsorption properties of solvents and reactive species and, ultimately, catalytic activity. In this work, the influence of support and solvent in the H-transfer reduction of propionaldehyde over Al(OiPr)3-SiO2, Al(OiPr)3-TiO2 and Al(OiPr)3-Al2O3 heterogenised catalysts has been studied. Reaction studies are coupled with both NMR relaxation measurements as well as molecular dynamics (MD) simulations in order to unravel surface and solvation effects during the reaction. The results show that, whilst the choice of the support does not influence significantly catalytic activity, reactions carried out in solvents with high affinity for the catalyst surface, or able to hinder access to active sites due to solvation effects, have a lower activity. MD calculations provide key insights into bulk solvation effects involved in such reactions, which are thought to play an important role in determining the catalytic behaviour. The activity of the heterogenised catalysts was found to be comparable with that of the homogeneous Al(OiPr)3 catalysts for all supports used, showing that for the type of reaction studied immobilisation of the homogeneous catalyst onto solid supports is a viable, robust and effective strategy.

4.
BMC Genomics ; 19(1): 469, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29914356

RESUMEN

BACKGROUND: Eukaryotic cells contain a huge variety of internally specialized subcellular compartments. Stoichiogenomics aims to reveal patterns of elements usage in biological macromolecules. However, the stoichiogenomic characteristics and how they adapt to various subcellular microenvironments are still unknown. RESULTS: Here we first updated the definition of stoichiogenomics. Then we applied it to subcellular research, and detected distinctive nitrogen content of nuclear and hydrogen, sulfur content of extracellular proteomes. Specially, we found that acidic amino acids (AAs) content of cytoskeletal proteins is the highest. The increased charged AAs are mainly caused by the eukaryotic originated cytoskeletal proteins. Functional subdivision of the cytoskeleton showed that activation, binding/association, and complexes are the three largest functional categories. Electrostatic interaction analysis showed an increased electrostatic interaction between both primary sequences and PPI interfaces of 3D structures, in the cytoskeleton. CONCLUSIONS: This study creates a blueprint of subcellular stoichiogenomic characteristics, and explains that charged AAs of the cytoskeleton increased greatly in evolution, which offer material basis for the eukaryotic cytoskeletal proteins to act in two ways of electrostatic interactions, and further perform their activation, binding/association and complex formation.


Asunto(s)
Evolución Biológica , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/fisiología , Genómica/métodos , Proteoma/análisis , Electricidad Estática , Aminoácidos/análisis , Animales , Núcleo Celular/metabolismo , Biología Computacional , Células Eucariotas/metabolismo , Humanos , Hidrógeno/análisis , Nitrógeno/análisis , Células Procariotas/metabolismo , Mapas de Interacción de Proteínas , Selección Genética , Fracciones Subcelulares , Azufre/análisis
5.
Sci Rep ; 9(1): 11344, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31383879

RESUMEN

Stomach cancer involves hypoxia-specific microenvironments. Stoichiogenomics explores environmental resource limitation on biological macromolecules in terms of element usages. However, the patterns of oxygen usage by proteins and the ways that proteins adapt to a cancer hypoxia microenvironment are still unknown. Here we compared the oxygen and carbon contents ([C]) between proteomes of stomach cancer (hypoxia) and two stomach glandular cells (normal). Key proteins, genome locations, pathways, and functional dissection associated with stomach cancer were also studied. An association of oxygen content ([O]) and protein expression level was revealed in stomach cancer and stomach glandular cells. For differentially expressed proteins (DEPs), oxygen contents in the up regulated proteins were3.2%higherthan that in the down regulated proteins in stomach cancer. A total of 1,062 DEPs were identified; interestingly none of these proteins were coded on Y chromosome. The up regulated proteins were significantly enriched in pathways including regulation of actin cytoskeleton, cardiac muscle contraction, pathway of progesterone-mediated oocyte maturation, etc. Functional dissection of the up regulated proteins with high oxygen contents showed that most of them were cytoskeleton, cytoskeleton associated proteins, cyclins and signaling proteins in cell cycle progression. Element signature of resource limitation could not be detected in stomach cancer for oxygen, just as what happened in plants and microbes. Unsaved use of oxygen by the highly expressed proteins was adapted to the rapid growth and fast division of the stomach cancer cells. In addition, oxygen usage bias, key proteins and pathways identified in this paper laid a foundation for application of stoichiogenomics in precision medicine.


Asunto(s)
Mucosa Gástrica/metabolismo , Oxígeno/metabolismo , Proteoma/genética , Neoplasias Gástricas/metabolismo , Carbono/metabolismo , Biología Computacional/métodos , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Genómica/métodos , Humanos , Proteoma/metabolismo , Transducción de Señal/genética , Neoplasias Gástricas/patología , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA