RESUMEN
We report a multiplexed capillary electrophoresis system employing an array of 32 capillaries with a micromachined sheath-flow cuvette as the detection chamber. The sample streams were simultaneously excited with a 473-nm laser beam, and the fluorescence emission was imaged on a CCD camera with a pair of doublet achromat lens. The instrument produced mass detection limits of 380 +/- 120 yoctomoles for fluorescein in zone electrophoresis. Capillary isoelectric focusing of fluorescent standards produced peaks with an average width of 0.0029 +/- 0.0008 pH. Capillary coating stability limits the reproducibility of the analysis.
Asunto(s)
Fluoresceínas/análisis , Focalización Isoeléctrica/métodos , Electroforesis Capilar/instrumentación , Electroforesis Capilar/métodos , Fluoresceínas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Focalización Isoeléctrica/instrumentación , Rayos Láser , Límite de DetecciónRESUMEN
We report a system that allows the simultaneous aspiration of one or more cells into each of five capillaries for electrophoresis analysis. A glass wafer was etched to create an array of 1-nL wells. The glass was treated with poly(2-hydroxyethyl methacrylate) to control cell adherence. A suspension of formalin-fixed cells was placed on the surface, and cells were allowed to settle. The concentration of cells and the settling time were chosen so that there was, on average, one cell per well. Next, an array of five capillaries was placed so that the tip of each capillary was in contact with a single well. A pulse of vacuum was applied to the distal end of the capillaries to aspirate the content of each well into a capillary. Next, the tips of the capillaries were placed in running buffer and potential was applied. The cells lysed upon contact with the running buffer, and fluorescent components were detected at the distal end of the capillaries by laser-induced fluorescence. The electrophoretic separation efficiency was outstanding, generating over 750,000 theoretical plates (1,800,000 plates/m). In this example, AtT-20 cells were used that had been treated with TMR-G(M1). The cells were allowed to metabolize this substrate into a series of products before the cells were fixed. The number of cells found in each well was estimated visually under the microscope and was described by a Poisson distribution with mean of 0.98 cell/well. This system provides an approach to high-throughput chemical cytometry.
Asunto(s)
Electroforesis Capilar/métodos , Citometría de Flujo/métodos , Gangliósidos/metabolismo , Animales , Línea Celular , Ceramidas/análisis , Ceramidas/metabolismo , Electroforesis Capilar/instrumentación , Citometría de Flujo/instrumentación , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Gangliósido G(M1)/análisis , Gangliósido G(M1)/metabolismo , Gangliósido G(M2)/análisis , Gangliósido G(M2)/metabolismo , Gangliósidos/análisis , Nanotecnología/instrumentación , Nanotecnología/métodos , Rodaminas/química , Rodaminas/metabolismoRESUMEN
In two-dimensional capillary electrophoresis, a sample undergoes separation in the first dimension capillary by sieving electrophoresis. Fractions are periodically transferred across an interface into a second dimension capillary, where components are further resolved by micellar electrokinetic capillary electrophoresis. Previous instruments employed one pair of capillaries to analyze a single sample. We now report a multiplexed system that allows separation of five samples in parallel. Samples are injected into five first-dimension capillaries, fractions are transferred across an interface to 5 second-dimension capillaries, and analyte is detected by laser-induced fluorescence in a five-capillary sheath-flow cuvette. The instrument produces detection limits of 940 +/- 350 yoctomoles for 3-(2-furoyl)quinoline-2-carboxaldehyde labeled trypsin inhibitor in one-dimensional separation; detection limits degrade by a factor of 3.8 for two-dimensional separations. Two-dimensional capillary electrophoresis expression fingerprints were obtained from homogenates prepared from a lung cancer (A549) cell line, on the basis of capillary sieving electrophoresis (CSE) and micellar electrophoresis capillary chromatography (MECC). An average of 131 spots is resolved with signal-to-noise greater than 10. A Gaussian surface was fit to a set of 20 spots in each electropherogram. The mean spot width, expressed as standard deviation of the Gaussian function, was 2.3 +/- 0.7 transfers in the CSE dimension and 0.46 +/- 0.25 s in the MECC dimension. The standard deviation in spot position was 1.8 +/- 1.2 transfers in the CSE dimension and 0.88 +/- 0.55 s in the MECC dimension. Spot capacity was 300.