Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cell Rep ; 42(10): 113089, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37734382

RESUMEN

Form and function are often interdependent throughout biology. Inside cells, mitochondria have particularly attracted attention since both their morphology and functionality are altered under pathophysiological conditions. However, directly assessing their causal relationship has been beyond reach due to the limitations of manipulating mitochondrial morphology in a physiologically relevant manner. By engineering a bacterial actin regulator, ActA, we developed tools termed "ActuAtor" that inducibly trigger actin polymerization at arbitrary subcellular locations. The ActuAtor-mediated actin polymerization drives striking deformation and/or movement of target organelles, including mitochondria, Golgi apparatus, and nucleus. Notably, ActuAtor operation also disperses non-membrane-bound entities such as stress granules. We then implemented ActuAtor in functional assays, uncovering the physically fragmented mitochondria being slightly more susceptible to degradation, while none of the organelle functions tested are morphology dependent. The modular and genetically encoded features of ActuAtor should enable its application in studies of the form-function interplay in various intracellular contexts.


Asunto(s)
Listeria monocytogenes , Listeria , Actinas/metabolismo , Listeria/metabolismo , Listeria monocytogenes/fisiología , Polimerizacion , Orgánulos/metabolismo , Proteínas Bacterianas/metabolismo
2.
bioRxiv ; 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37503105

RESUMEN

Axons are thought to be ultrathin membrane cables of a relatively uniform diameter, designed to conduct electrical signals, or action potentials. Here, we demonstrate that unmyelinated axons are not simple cylindrical tubes. Rather, axons have nanoscopic boutons repeatedly along their length interspersed with a thin cable with a diameter of ∼60 nm like pearls-on-a-string. These boutons are only ∼200 nm in diameter and do not have synaptic contacts or a cluster of synaptic vesicles, hence non-synaptic. Our in silico modeling suggests that axon pearling can be explained by the mechanical properties of the membrane including the bending modulus and tension. Consistent with modeling predictions, treatments that disrupt these parameters like hyper- or hypo-tonic solutions, cholesterol removal, and non-muscle myosin II inhibition all alter the degree of axon pearling, suggesting that axon morphology is indeed determined by the membrane mechanics. Intriguingly, neuronal activity modulates the cholesterol level of plasma membrane, leading to shrinkage of axon pearls. Consequently, the conduction velocity of action potentials becomes slower. These data reveal that biophysical forces dictate axon morphology and function and that modulation of membrane mechanics likely underlies plasticity of unmyelinated axons.

3.
Biophys Rep (N Y) ; 2(3)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36157269

RESUMEN

Biomembranes adopt varying morphologies that are vital to cellular functions. Many studies use computational modeling to understand how various mechanochemical factors contribute to membrane shape transformations. Compared with approximation-based methods (e.g., finite element method [FEM]), the class of discrete mesh models offers greater flexibility to simulate complex physics and shapes in three dimensions; its formulation produces an efficient algorithm while maintaining coordinate-free geometric descriptions. However, ambiguities in geometric definitions in the discrete context have led to a lack of consensus on which discrete mesh model is theoretically and numerically optimal; a bijective relationship between the terms contributing to both the energy and forces from the discrete and smooth geometric theories remains to be established. We address this and present an extensible framework, Mem3DG, for modeling 3D mechanochemical dynamics of membranes based on discrete differential geometry (DDG) on triangulated meshes. The formalism of DDG resolves the inconsistency and provides a unifying perspective on how to relate the smooth and discrete energy and forces. To demonstrate, Mem3DG is used to model a sequence of examples with increasing mechanochemical complexity: recovering classical shape transformations such as 1) biconcave disk, dumbbell, and unduloid; and 2) spherical bud on spherical, flat-patch membrane; investigating how the coupling of membrane mechanics with protein mobility jointly affects phase and shape transformation. As high-resolution 3D imaging of membrane ultrastructure becomes more readily available, we envision Mem3DG to be applied as an end-to-end tool to simulate realistic cell geometry under user-specified mechanochemical conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA