Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 946: 174147, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38909800

RESUMEN

Environmental behaviors of heavy metal in soil are strongly influenced by seasonal freeze-thaw events at the mid-high altitudes. However, the potential impact mechanisms of freeze-thaw cycles on the vertical migration of heavy metal are still poor understood. This study aimed to explore how exogenous cadmium (Cd) migrated and remained in soil during the in-situ seasonal freeze-thaw action using rare earth elements (REEs) as tracers. As a comparison, soil which was incubated in the controlled laboratory (25 °C) was employed. Although there was no statistically significant difference in the Cd levels of different soil depths under different treatments, the original aggregate sources of Cd in the 5-10 cm and 10-15 cm soil layers differed. From the distributions of REEs in soil profile, it can be known that Cd in the subsurface of field incubated soil was mainly from the breakdown of >0.50 mm aggregates, while it was mainly from the <0.106 mm aggregates for the laboratory incubated soil. Furthermore, the dissolved and colloidal Cd concentrations were 0.47 µg L-1 and 0.62 µg L-1 in the leachates from field incubated soil than those from control soil (0.21 µg L-1 and 0.43 µg L-1). Additionally, the colloid-associated Cd in the leachate under field condition was mainly from the breakdown of >0.25 mm aggregates and the direct migration of <0.106 mm aggregates, while it was the breakdown of >0.50 mm and the direct migration of <0.106 mm aggregates for the soil under laboratory condition. Our results for the first time provided insights into the fate of exogenous contaminants in seasonal frozen regions using the rare earth element tracing method.

2.
Rev. bras. farmacogn ; 25(2): 117-123, Mar-Apr/2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-749857

RESUMEN

Abstract The effects of allelochemicals and aqueous extracts from different Pogostemon cablin (Blanco) Benth., Lamiaceae, parts and rhizosphere soil on growth parameters, leaf membrane peroxidation and leaf antioxidant enzymes were investigated in patchouli. P. cablin seedlings were incubated in solutions containing allelochemicals and aqueous extracts from different patchouli parts and its rhizosphere soil at several concentrations. Firstly, the growth parameters were significantly reduced by the highest concentration of leaves, roots and stems extracts (p < 0.05). As compared to the control, plant height was reduced by 99.8% in the treatment with leaves extracts (1:10). The malondialdehyde content increased greatly when patchouli seedlings were subject to different concentrations of leaves, roots and stems extracts; meanwhile, the superoxide dismutase and peroxidase activities showed an increase trend at the low concentration, followed by a decline phase at the high concentration of roots and leaves extracts (1:10). What's more, leaves and roots extracts had a more negative effect on patchouli growth than stems extracts at the same concentrations. Secondly, the total fresh mass, root length and plant height were greatly reduced by the highest strength of soil extracts. Their decrements were 22.7, 74.9, and 33.1%, respectively. Thirdly, growth parameters and enzymatic activities varied considerably with the kinds of allelochemicals and with the different concentrations. Plant height, root length and total fresh weight of patchouli were greatly reduced by p-hydroxybenzoic acid (200 μM), and their decrements were 77.0, 42.0 and 70.0%, respectively. Finally, three useful measures on reducing the autotoxicity during the sustainable patchouli production were proposed.

3.
Rev. bras. farmacogn ; 24(6): 626-634, Nov-Dec/2014. tab, graf
Artículo en Inglés | LILACS | ID: lil-741836

RESUMEN

Sesquiterpenes Essential oil produced by patchouli was one of the most important naturally occurring base materials used in the perfume industry, containing various sesquiterpenes. Three different parts (leaves, stems and roots) of Pogostemon cablin (Blanco) Benth., Lamiaceae, were profiled in relation to different maturation phases in this paper, evaluating the variations in content of the major sesquiterpenes in the essential oil. Twelve sesquiterpenes were analyzed by GC-MS throughout the maturity of P. cablin. Patchouli alcohol (37.54%-51.02% in leaves, 28.24%-41.96% in stems and 14.55%-35.12% in roots) was the major sesquiterpene during the maturation of the plant. The average content of several other sesquiterpenes (α-bulnesene, α-guaiene, seychellene, β-humulene and caryophyllene) were higher than 3% among leaves, stems and roots. The content of essential oil, patchouli alcohol, α-bulnesene and several other compounds were highly accumulated at 210 days of maturation after cultivation of P. cablin. Thus, this period was the best moment to exploit the maximum level of these high value-added compounds in P. cablin. Furthermore, our results indicated that the essential oil extracted from leaves of P. cablin has the highest potential to be used in the perfume industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA