Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 490(7420): 384-7, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23051749

RESUMEN

The determination of the atomic structure and the retrieval of information about reconstruction and bonding of metal oxide surfaces is challenging owing to the highly defective structure and insulating properties of these surfaces. Transmission electron microscopy (TEM) offers extremely high spatial resolution (less than one ångström) and the ability to provide systematic information from both real and reciprocal space. However, very few TEM studies have been carried out on surfaces because the information from the bulk dominates the very weak signals originating from surfaces. Here we report an experimental approach to extract surface information effectively from a thickness series of electron energy-loss spectra containing different weights of surface signals, using a wedge-shaped sample. Using the (001) surface of the technologically important compound strontium titanate, SrTiO(3) (refs 4-6), as a model system for validation, our method shows that surface spectra are sensitive to the atomic reconstruction and indicate bonding and crystal-field changes surrounding the surface Ti cations. Very good agreement can be achieved between the experimental surface spectra and crystal-field multiplet calculations based on the proposed atomic surface structure optimized by density functional calculations. The distorted TiO(6-x) units indicated by the proposed model can be viewed directly in our high-resolution scanning TEM images. We suggest that this approach be used as a general method to extract valuable spectroscopic information from surface atoms in parallel with high-resolution images in TEM.

2.
Microsc Microanal ; 21(3): 617-25, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25951837

RESUMEN

In order to achieve reliable structural characterization by transmission electron microscopy, beam-induced structural changes should be clarified for any target material system. As an example, the movement of heavy adatoms on a thin carbon support has been repeatedly reported under the electron beam while the underlying reason for such motion is still in debate. By applying statistical analysis to the group behavior of gold adatoms, we investigated their motion under different beam conditions and detected features corresponding to beam-induced motion, under typical scanning transmission electron microscopy observation conditions. Our results are consistent with the theoretical prediction proposed by Egerton (2013).

3.
Microsc Microanal ; 20(3): 649-57, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24345376

RESUMEN

We report a new simple but effective method to extract the weak surface signals from a "thickness series" of recorded electron energy-loss spectra. Using precise thickness measurements and energy-loss near-edge structures measured at increasing thicknesses, we are able to extract the surface and bulk components in the series. The electronic structure and bonding information from SrTiO3 (001) reconstructed surfaces have been successfully obtained by applying this approach. This approach can be applied to study many other cases including absorbed monolayers and beam-sensitive interfaces.

4.
Am J Physiol Renal Physiol ; 304(1): F112-9, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23077098

RESUMEN

Reactive oxygen species (ROS) play a critical role in renal ischemia-reperfusion injury (IRI). Intermedin (IMD) reportedly protected against myocardial IRI via its antioxidant effects; however, its protective role in renal IRI has not been investigated. We overexpressed IMD in rat kidneys and examined how the kidneys respond to renal IRI. Eukaryotic expression plasmid encoding the rat IMD gene or control empty vector was transfected into the left kidney using an ultrasound-microbubble-mediated delivery system. This method yielded high expression of IMD in kidney cells. Renal IRI was induced by clamping the left renal artery followed by reperfusion. In response to IRI, overexpression of IMD in the kidney significantly improved renal function and pathology compared with the kidney transfected with control plasmid. We investigated the mechanisms by which IMD protects against renal IRI. We examined renal superoxide dismutase (SOD) activity and malondialdehyde (MDA) content and found SOD activity was significantly increased, while MDA level was markedly decreased in kidneys transfected with IMD, suggesting ROS production and oxidative stress were reduced by IMD overexpression. We also measured myeloperoxidase (MPO) activity, tubular cell apoptosis, and the expression of intercellular adhesion molecule-1 (ICAM-1), P-selectin, and endothelin-1 (ET-1) in the kidney. Renal MPO activity and the expression of ICAM-1, P-selectin, and ET-1 stimulated by IRI were significantly inhibited by IMD overexpression. Moreover, IMD overexpression prevented kidney cells from apoptosis caused by IRI. Our results demonstrate that overexpression of IMD in the kidney protects against renal IRI, apparently by reducing oxidative stress, consequently suppressing inflammation and vasoconstrictor production and apoptosis.


Asunto(s)
Lesión Renal Aguda/prevención & control , Adrenomedulina/farmacología , Riñón/irrigación sanguínea , Neuropéptidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Daño por Reperfusión/prevención & control , Animales , Riñón/patología , Masculino , Modelos Animales , Ratas , Ratas Wistar , Transfección/métodos
5.
Phys Chem Chem Phys ; 15(27): 11420-6, 2013 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-23744110

RESUMEN

The ability to visualize and identify individual dopants, as well as measure their local physical and chemical environments in a bulk, provides deep insight for designing new functional materials and predicting their properties. However, a full understanding of dopants inside a solid has been limited by currently available characterization techniques. We demonstrate the first atomic-level 2-dimensional elemental maps of Pr dopants using the electron energy-loss spectroscopy (EELS) technique and we image Al dopants located in a lattice. Based on spectroscopic and imaging evidence we provide plausible local defect configurations of implanted Pr(+) and Al(+) ions within SrTiO3 single crystals. Our results demonstrate the detection of single Pr atoms and the formation of Al-rich nanoscale clusters ranging from 1 to 3 nm in size randomly distributed in the implanted lattice. These results provide insight into the mechanism of red light emission in doped SrTiO3.

6.
ACS Omega ; 7(12): 10406-10412, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35382305

RESUMEN

Sawtooth faceting, with a diameter-dependent period, is pervasively observed in many Si, III-V, and II-VI nanowires during vapor-phase growth. This can be linked to an oscillation in surface energies, which are influenced by many factors such as crystal anisotropy, surface decoration, and twinning. Without the presence of surface decoration and planar defects, TiO2 rutile nanowires, axially oriented along a low-symmetry axis of ⟨110⟩, are promising to decouple the effect of crystal anisotropy from other factors. In this work, we synthesized ⟨110⟩ rutile nanowires, which exhibit complex periodic faceting consisting of {101} and {11̅0} facets. In addition to the expected linear width dependence, rutile nanowires, with the same width but different outward-inclined shapes, maintain the same period of their sawtooth faceting, as measured from TEM micrographs. In spite of different surface energy oscillations caused by different shapes, identical nucleation sites, which become energetically favorable during sawtooth growth, are predicted using thermodynamic models for nanowires with different shapes. This finding provides new insights into the morphological control of nanowires.

7.
RSC Adv ; 12(9): 5577-5586, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35425545

RESUMEN

Ion beam irradiation is a promising method to manipulate the composition and shape of nanowires. It causes the formation of crystal defects like vacancies and dislocations, and consequently, a volume expansion within the irradiated region, giving rise to the nanowire bending. The bending effect has been extensively discussed within nanowires with different diameters under ion beams with varying energies and ion fluences. However, the behaviors of nanowires with complicated shapes, which may have non-uniform irradiated regions due to the changing angle of incidence and shadowing effect, have remained largely unknown. Herein, the structural changes and bending of TiO2 nanowires with both bead-like and prismatic shapes are investigated under a Ga+ ion beam. The multi-faceted morphology, and consequently, varying angles of incidence, result in inhomogeneous irradiation and volume expansion. As a result, significant bending is only observed in prismatic nanowires. Since irradiation is confined within the half of nanowires facing the ion beam, the bending of nanowires is reversible by changing the direction of the ion beam. In order to provide insights into the tailoring composition and morphology of nanowires, we anticipate that this finding can establish the beam analog at the nanoscale, the bending of which can be tuned by ion irradiation.

8.
Sci Rep ; 6: 38537, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27924848

RESUMEN

Manipulating the shape and distribution of strengthening units, e.g. particles, fibers, and precipitates, in a bulk metal, has been a widely applied strategy of tailoring their mechanical properties. Here, we report self-assembled patterns of Gd nano-fibers in Mg-Gd alloys for the purpose of improving their strength and deformability. 1-nm Gd nano-fibers, with a 〈c〉-rod shape, are formed and hexagonally patterned in association with Gd segregations along dislocations that nucleated during hot extrusion. Such Gd-fiber patterns are able to regulate the relative activities of slips and twinning, as a result, overcome the inherent limitations in strength and ductility of Mg alloys. This nano-fiber patterning approach could be an effective method to engineer hexagonal metals.

9.
Micron ; 68: 141-145, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25043440

RESUMEN

With the dramatic improvement in the spatial resolution of scanning transmission electron microscopes over the past few decades, the tolerance of a specimen to the high-energy electron beam becomes the limiting factor for the quality of images and spectra obtained. Therefore, a deep understanding of the beam irradiation processes is crucial to extend the applications of electron microscopy. In this paper, we report the structural evolution of a selected oxide, MgAl2O4, under an 80 keV focused electron probe so that the beam irradiation process is not dominated by the knock-on mechanism. The formation of peroxyl bonds and the assisted atomic migration were studied using imaging and electron energy-loss spectroscopic techniques.

10.
ChemCatChem ; 7(22): 3655-3664, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26613010

RESUMEN

Coupling electron microscopy techniques with in situ heating ability allows us to study phase transformations on the single-nanoparticle level. We exploit this setup to study disorder-to-order transformation of Pt-Fe alloy nanoparticles, a material that is of great interest to fuel-cell electrocatalysis and ultrahigh density information storage. In contrast to earlier reports, we show that Fe (instead of Pt) segregates towards the particle surface during annealing and forms a Fe-rich FeO x outer shell over the alloy core. By combining both ex situ and in situ approaches to probe the interplay between ordering and surface-segregation phenomena, we illustrate that the surface segregation of Fe precedes the ordering process and affects the ordered phase evolution dramatically. We show that the ordering initiates preferably at the pre-existent Fe-rich shell than the particle core. While the material-specific findings from this study open interesting perspectives towards a controlled phase evolution of Pt-Fe nanoalloys, the characterization methodologies described are general and should prove useful to probing a wide-range of nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA