Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Idioma
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 29(11): 3596-3606, 2018 Nov.
Artículo en Zh | MEDLINE | ID: mdl-30460806

RESUMEN

To understand photosynthetic mechanism of tea yield and quality, an experiment was conducted with four different typical habitats, including three intercropping patterns (S1:Osmanthus-Tea, S2:Michelia-Tea, S3:Osmanthus-Michelia-Tea) and a control (CK) at Changsha Agricutural Observation Station of Chinese Academy of Sciences. The photosynthetic physiological and ecological characteristics of tea yield and quality were examined. The results showed that the habitats S1, S2, S3 reduced the leaf temperature (TL), photosynthesis active radiation flux (PAR), net photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (gs), as well as the tea polyphenol content. Habitats S1, S2, S3 significantly increased leaf relative humidity (RHS), total amino-acid content of tea, and the yield and quality of tea, with a pattern of S3>S1>S2>CK. The leaves in habitats S1 and S3 could be made into high-grade green tea and famous green tea respectively. Comprehensive indicators showed that habitat S3 is an ideal intercropping pattern for high quality and high yield of tea garden.


Asunto(s)
Ecosistema , Fotosíntesis , Té/fisiología , Hojas de la Planta , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA