Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Anal Chem ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311680

RESUMEN

Nowadays, continuous efforts have been devoted to designing stable and high-efficiency electrochemiluminescence (ECL) emitters as alternatives for tris(2,2'-bipyridine)-ruthenium(II) (Ru(bpy)32+) in medical research. Herein, a novel ECL emitter was obtained by coordinating crystalline covalent triazinyl frameworks (cCTFs) with Ru2+ (termed Ru-cCTFs), which exhibited strong ECL emission by the ligand to metal charge transfer (LMCT) route. After its integration with 4-mercaptopyridine (SH-Py), the resultant SH-Py-Ru-cCTFs achieved 2.3-fold enhancement in the ECL efficiency by employing Ru(bpy)32+ as a standard, which involved a dynamic "intrarticular radical annihilation" ECL pathway. On such foundation, an automated ECL (A-ECL) aptasensor was constructed with an "on-off-on" model and magnetic separation upon linkage of the SH-Py-Ru-cCTFs with streptavidin (SA) magnetic beads (MBs). This automatic assay of miRNA-182 showed a wider linear range from 1.0 to 100.0 fM with a correlation coefficient (R2) of 0.994, a lower limit of detection (LOD) down to 0.28 fM, and faster operation within 41 min. Impressively, this bioassay facilely distinguished the stages of glioma disease from clinical blood samples with high accuracy. Hence, this research sheds light on how to develop advanced ECL luminophores and an automatic method, showing substantial insights into pathogenesis research of gliomas.

2.
Anal Chem ; 96(21): 8586-8593, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38728058

RESUMEN

Nowadays, signal enhancement is imperative to increase sensitivity of advanced ECL devices for expediting their promising applications in clinic. In this work, photodynamic-assisted electrochemiluminescence (PDECL) device was constructed for precision diagnosis of Parkinson, where an advanced emitter was prepared by electrostatically linking 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) with 1-butyl-3-methylimidazole tetrafluoroborate ([BMIm][BF4]). Specifically, protoporphyrin IX (PPIX) can trigger the photodynamic reaction under light irradiation with a wavelength of 450 nm to generate lots of singlet oxygen (1O2), showing a 2.43-fold magnification in the ECL responses. Then, the aptamer (Apt) was assembled on the functional BET-[BMIm] for constructing a "signal off" ECL biosensor. Later on, the PPIX was embedded into the G-quadruplex (G4) of the Apt to magnify the ECL signals for bioanalysis of α-synuclein (α-syn) under light excitation. In the optimized surroundings, the resulting PDECL sensor has a broad linear range of 100.0 aM ∼ 10.0 fM and a low limit of detection (LOD) of 63 aM, coupled by differentiating Parkinson patients from normal individuals according to the receiver operating characteristic (ROC) curve analysis of actual blood samples. Such research holds great promise for synthesis of other advanced luminophores, combined with achieving an early clinical diagnosis.


Asunto(s)
Compuestos de Boro , Técnicas Electroquímicas , Mediciones Luminiscentes , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/sangre , Compuestos de Boro/química , Técnicas Biosensibles/métodos , alfa-Sinucleína/análisis , alfa-Sinucleína/sangre , Protoporfirinas/química , Aptámeros de Nucleótidos/química , Límite de Detección
3.
Analyst ; 149(2): 426-434, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099364

RESUMEN

Nowadays, organic emitters suffer from insufficient electrochemiluminescence (ECL) efficiency in aqueous solutions, and their practical applications are severely restricted in the bio-sensing field. In this work, palladium nanospheres-embedded metal-organic frameworks (Pd@MOFs) were exploited to enhance the ECL efficiency of 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) prepared by a one-pot method in aqueous environment. First, the Pd@MOFs were generated via in situ reduction of Pd nanospheres anchored onto the MOFs, and fabricated by orderly coordination of palladium chloride (PdCl2) with 1,2,4,5-benzenetetramine (BTA) tetrahydrochloride. Then, the influence of protons on the ECL response of BET was studied in detail to obtain stronger ECL emission using potassium persulfate (K2S2O8) as co-reactant in aqueous environment. As a result, a 1.47-fold ECL efficiency enlargement of BET/K2S2O8 was harvested at the Pd@MOFs/GCE, where Ru(bpy)32+ behaved as a standard. Based on the fact that the ECL signals of the BET-covered Pd@MOFs modified glassy carbon electrode (simplified as BET/Pd@MOFs/GCE) can be quenched by Cu2+, the as-built ECL sensor showed a wide linear range (1.0-100.0 pM) and a limit of detection (LOD) as low as 0.12 pM. Hence, such research offers huge potential to promote the development of organic emitters in ECL biosensors and environmental monitoring.

4.
Sensors (Basel) ; 24(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39001035

RESUMEN

With the rapid development of the Internet of Things (IoT), the sophistication and intelligence of sensors are continually evolving, playing increasingly important roles in smart homes, industrial automation, and remote healthcare. However, these intelligent sensors face many security threats, particularly from malware attacks. Identifying and classifying malware is crucial for preventing such attacks. As the number of sensors and their applications grow, malware targeting sensors proliferates. Processing massive malware samples is challenging due to limited bandwidth and resources in IoT environments. Therefore, compressing malware samples before transmission and classification can improve efficiency. Additionally, sharing malware samples between classification participants poses security risks, necessitating methods that prevent sample exploitation. Moreover, the complex network environments also necessitate robust classification methods. To address these challenges, this paper proposes CSMC (Compressed Sensing Malware Classification), an efficient malware classification method based on compressed sensing. This method compresses malware samples before sharing and classification, thus facilitating more effective sharing and processing. By introducing deep learning, the method can extract malware family features during compression, which classical methods cannot achieve. Furthermore, the irreversibility of the method enhances security by preventing classification participants from exploiting malware samples. Experimental results demonstrate that for malware targeting Windows and Android operating systems, CSMC outperforms many existing methods based on compressed sensing and machine or deep learning. Additionally, experiments on sample reconstruction and noise demonstrate CSMC's capabilities in terms of security and robustness.

5.
Anal Chem ; 95(10): 4735-4743, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36852949

RESUMEN

Nowadays, electrochemiluminescence (ECL) efficiency of an organic emitter is closely related with its potential applications in food safety and environmental monitoring fields. In this work, 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine (TATB) was self-assembled to form hydrogen bond organic frameworks (HOFs), which worked as ideal reactors to generate highly active oxygen-containing radicals, followed by linking with isoluminol (ILu) via amide bond (termed ILu-HOFs). After covalent assembly with aminated indium-tin oxide electrode (labeled NH2-ITO), the ECL efficiency of the ILu-HOFs NH2-ITO showed about a 23.4-time increase over that of ILu itself in the presence of H2O2. Meanwhile, the enhanced ECL mechanism was mainly studied by electron paramagnetic resonance, theoretical calculation, and electrochemistry. On the above foundation, an aptamer "sandwich" ECL biosensor was constructed for detecting isocarbophos (ICP) via in situ elimination of H2O2 with catalase-linked palladium nanocubes (CAT-Pd NCs). The as-built sensor showed a broad linear range (1 pM to 100 nM) and a low limit of detection (LOD) down to 0.4 pM, coupled with efficient assays of ICP in lake water and cucumber juice samples. This strategy provides an effective way for the synthesis of advanced ECL emitter, coupled by showing promising applications in environmental and food analysis.


Asunto(s)
Técnicas Biosensibles , Peróxido de Hidrógeno , Enlace de Hidrógeno , Mediciones Luminiscentes , Límite de Detección , Electrodos , Técnicas Electroquímicas
6.
Eur J Nucl Med Mol Imaging ; 49(8): 2645-2654, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35122512

RESUMEN

PURPOSE: Bacterial infection and antibiotic resistance are serious threats to human health. This study aimed to develop two novel radiotracers, 18F-NTRP and 18F-NCRP, that possess a specific nitroreductase (NTR) response to image deep-seated bacterial infections using positron emission tomography (PET). This method can distinguish infection from sterile inflammation. METHODS: 18F-NTRP and 18F-NCRP were synthesized via a one-step method; all the steps usually involved in tracer radiosynthesis were successfully adapted in the All-In-One automated module. After the physiochemical properties of 18F-NTRP and 18F-NCRP were characterized, their specificity and selectivity for NTR were verified in E. coli and S. aureus. The ex vivo biodistribution of the tracers was evaluated in normal mice. MicroPET-CT imaging was performed in mouse models of bacterial infection and inflammation after the administration of 18F-NTRP or 18F-NCRP. RESULTS: Fully automated radiosynthesis of 18F-NTRP and 18F-NCRP was achieved within 90-110 min with overall decay-uncorrected, isolated radiochemical yields of 21.24 ± 4.25% and 11.3 ± 3.78%, respectively. The molar activities of 18F-NTRP and 18F-NCRP were 320 ± 40 GBq/µmol and 275 ± 33 GBq/µmol, respectively. In addition, 18F-NTRP and 18F-NCRP exhibited high selectivity and specificity for NTR response. PET-CT imaging in bacteria-infected mouse models with 18F-NTRP or 18F-NCRP showed significant radioactivity uptake in either E. coli- or S. aureus-infected muscles. The uptake for E. coli-infected muscles, 2.4 ± 0.2%ID/g with 18F-NTRP and 4.05 ± 0.49%ID/g with 18F-NCRP, was up to three times greater than that for uninfected control muscles. Furthermore, for both 18F-NTRP and 18F-NCRP, the uptake in bacterial infection was 2.6 times higher than that in sterile inflammation, allowing an effective distinction of infection from inflammation. CONCLUSION: 18F-NTRP and 18F-NCRP are worth further investigation to verify their potential clinical application for distinguishing bacterial infection from sterile inflammation via their specific NTR responsiveness.


Asunto(s)
Infecciones Bacterianas , Mecloretamina , Animales , Escherichia coli , Radioisótopos de Flúor/química , Humanos , Inflamación/diagnóstico por imagen , Ratones , Nitrorreductasas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Staphylococcus aureus , Distribución Tisular , Tomografía Computarizada por Rayos X
7.
Inorg Chem ; 61(18): 6910-6918, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35473356

RESUMEN

Four polyoxometalate (POM)-based organic-inorganic hybrid compounds, namely, (H2bimb)6H8[((Mn(H2O)3(µ-bimb))0.5(Mn(H2O)4)(Mn(H2O)5)0.5(AgP5W30O110))2]·29H2O (1), [(Cu(Hbimb)(H2O)2(µ-bimb)Cu(Hbimb)(H2O))(Cu(H2O)2(µ-bimb)Cu(H2O)3)((Cu(H2O)2)0.5(µ-bimb)(Cu(H2O)3)0.5)H2(AgP5W30O110)]·12.5H2O (2), (H2bimb)2H[(Zn(Hbimb)(H2O)4(Zn(Hbimb)(H2O)2)0.5)2(AgP5W30O110)]·12H2O (3), and (H2bimb)3H2[(Ag(H2O)2)0.5(Ag(Hbimb)Ag(Hbimb)(µ-bimb)Ag)(Ag(H2O)2)0.5(AgP5W30O110)]·7H2O (4) (bimb = 1,4-bis(1H-imidazol-1-yl)benzene), were hydrothermally synthesized using a silver-centered Preyssler-type POM K14[AgP5W30O110]·18H2O (abbreviated as K-{AgP5W30}) as a precursor. In 1-4, {AgP5W30} clusters integrating the merits of Ag+ and {P5W30} units are modified by different transition metal (TM)-organic fragments to extend the structures into three-dimensional frameworks. As nonenzymatic electrochemical sensor materials, 1-4 show good electrocatalytic activity, high sensitivity, and a low detection limit for detecting hydrogen peroxide (H2O2); 4 possesses the highest sensitivity of 195.47 µA·mM-1·cm-2 for H2O2 detection. Most importantly, the average level of H2O2 detection of these {AgP5W30}-based materials outperforms that of Na-centered Preyssler-type {NaP5W30} and most Keggin-type POM-based materials. The performances of such {AgP5W30} materials mainly stem from the unique advantage of high-negatively charged {AgP5W30} clusters together with the good synergistic effect between {AgP5W30} and TMs. This work expands on the research of high-efficiency POM-based nonenzymatic electrochemical H2O2 sensors using Ag-containing POMs with high negative charges, which is also of great theoretical and practical significance to carry out health monitoring and environmental analysis.


Asunto(s)
Peróxido de Hidrógeno , Plata , Aniones , Peróxido de Hidrógeno/química , Polielectrolitos , Plata/química
8.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012740

RESUMEN

MicroRNAs (miRNAs), a class of endogenous small RNAs, are broadly involved in plant development, morphogenesis and responses to various environmental stresses, through manipulating the cleavage, translational expression, or DNA methylation of target mRNAs. miR393 is a conserved miRNA family present in many plants, which mainly targets genes encoding the transport inhibitor response1 (TIR1)/auxin signaling F-box (AFB) auxin receptors, and thus greatly affects the auxin signal perception, Aux/IAA degradation, and related gene expression. This review introduces the advances made on the miR393/target module regulating plant development and the plant's responses to biotic and abiotic stresses. This module is valuable for genetic manipulation of optimized conditions for crop growth and development and would also be helpful in improving crop yield through molecular breeding.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , MicroARNs , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente/genética , Receptores de Superficie Celular/metabolismo , Estrés Fisiológico/genética
9.
BMC Plant Biol ; 21(1): 140, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726676

RESUMEN

BACKGROUND: Genomic imprinting results in the expression of parent-of-origin-specific alleles in the offspring. Brassica napus is an oil crop with research values in polyploidization. Identification of imprinted genes in B. napus will enrich the knowledge of genomic imprinting in dicotyledon plants. RESULTS: In this study, we performed reciprocal crosses between B. napus L. cultivars Yangyou 6 (Y6) and Zhongshuang 11 (ZS11) to collect endosperm at 20 and 25 days after pollination (DAP) for RNA-seq. In total, we identified 297 imprinted genes, including 283 maternal expressed genes (MEGs) and 14 paternal expressed genes (PEGs) according to the SNPs between Y6 and ZS11. Only 36 genes (35 MEGs and 1 PEG) were continuously imprinted in 20 and 25 DAP endosperm. We found 15, 2, 5, 3, 10, and 25 imprinted genes in this study were also imprinted in Arabidopsis, rice, castor bean, maize, B. rapa, and other B. napus lines, respectively. Only 26 imprinted genes were specifically expressed in endosperm, while other genes were also expressed in root, stem, leaf and flower bud of B. napus. A total of 109 imprinted genes were clustered on rapeseed chromosomes. We found the LTR/Copia transposable elements (TEs) were most enriched in both upstream and downstream of the imprinted genes, and the TEs enriched around imprinted genes were more than non-imprinted genes. Moreover, the expression of 5 AGLs and 6 pectin-related genes in hybrid endosperm were significantly changed comparing with that in parent endosperm. CONCLUSION: This research provided a comprehensive identification of imprinted genes in B. napus, and enriched the gene imprinting in dicotyledon plants, which would be useful in further researches on how gene imprinting regulates seed development.


Asunto(s)
Brassica napus/genética , Brassica napus/metabolismo , Quimera , Endospermo/genética , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Impresión Genómica , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Genes de Plantas
10.
Small ; 14(42): e1802204, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30239123

RESUMEN

A rationally designed oxygen evolution reaction (OER) catalyst with advanced structural and compositional superiority is highly desirable to optimize electrocatalytic performance. Prussian blue analogues (PBAs) with adjustable element compositions and accessible porous structures represent a promising precursor for the preparation of OER catalysts. Herein, oxygen-doped nickel iron phosphide nanocube arrays (Ni2 P/(NiFe)2 P(O) NAs) grown on Ni foam is rationally designed and fabricated from PBAs. The porous structure and the synergistic effect of Ni and Fe enable superior electrocatalytic performance and stability toward the OER in alkaline electrolytes. Density functional theory calculations reveal that Fe-incorporated Ni2 P can generate new active sites on the Fe atoms, and the energy barriers of the intermediates and products are decreased efficiently in the presence of surface doped oxygen, both processes are crucial factors for enhanced catalytic performances. In 1 m KOH, the Ni2 P/(NiFe)2 P(O) NAs afford current densities of 10 and 800 mA cm-2 at overpotentials of 150 and 530 mV, respectively, which outperform the commercial noble metal IrO2 . Ni2 P/(NiFe)2 P(O) NAs also have long-term stability over 100 h at a high current density. The present approach may provide a new avenue for the controlled assembly of nanoarrays for energy storage and conversion applications.

11.
J Comput Biol ; 31(5): 445-457, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38752891

RESUMEN

ABSTRACT An alternative transcription start site (ATSS) is a major driving force for increasing the complexity of transcripts in human tissues. As a transcriptional regulatory mechanism, ATSS has biological significance. Many studies have confirmed that ATSS plays an important role in diseases and cell development and differentiation. However, exploration of its dynamic mechanisms remains insufficient. Identifying ATSS change points during cell differentiation is critical for elucidating potential dynamic mechanisms. For relative ATSS usage as percentage data, the existing methods lack sensitivity to detect the change point for ATSS longitudinal data. In addition, some methods have strict requirements for data distribution and cannot be applied to deal with this problem. In this study, the Bayesian change point detection model was first constructed using reparameterization techniques for two parameters of a beta distribution for the percentage data type, and the posterior distributions of parameters and change points were obtained using Markov Chain Monte Carlo (MCMC) sampling. With comprehensive simulation studies, the performance of the Bayesian change point detection model is found to be consistently powerful and robust across most scenarios with different sample sizes and beta distributions. Second, differential ATSS events in the real data, whose change points were identified using our method, were clustered according to their change points. Last, for each change point, pathway and transcription factor motif analyses were performed on its differential ATSS events. The results of our analyses demonstrated the effectiveness of the Bayesian change point detection model and provided biological insights into cell differentiation.


Asunto(s)
Teorema de Bayes , Diferenciación Celular , Sitio de Iniciación de la Transcripción , Diferenciación Celular/genética , Humanos , Cadenas de Markov , Método de Montecarlo , Modelos Genéticos , Algoritmos , Simulación por Computador
12.
3D Print Med ; 10(1): 20, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38914872

RESUMEN

OBJECTIVE: Segmental bone defect animal studies require stable fixation which is a continuous experimental challenge. Large animal models are comparable to the human bone, but with obvious drawbacks of housing and costs. Our study aims to utilize CAD and 3D printing in the construction of a stable and reproducible segmental bone defect animal mode. METHODS: CAD-aided 3D printed surgical instruments were incorporated into the construction of the animal model through preoperative surgical emulation. 20 3D printed femurs were divided into either experimental group using 3D surgical instruments or control group. In Vitro surgical time and accuracy of fixation were analysed and compared between the two groups. A mature surgical plan using the surgical instruments was then utilized in the construction of 3 segmental bone defect Beagle models in vivo. The Beagles were postoperatively assessed through limb function and imaging at 1, 2 and 3 months postoperatively. RESULTS: In vitro experiments showed a significant reduction in surgical time from 40.6 ± 14.1 (23-68 min) to 26 ± 4.6 (19-36 min) (n = 10, p < 0.05) and the accuracy of intramedullary fixation placement increased from 71.6 ± 23.6 (33.3-100) % to 98.3 ± 5.37 (83-100) %, (n = 30, p < 0.05) with the use of CAD and 3D printed instruments. All Beagles were load-bearing within 1 week, and postoperative radiographs showed no evidence of implant failure. CONCLUSION: Incorporation of CAD and 3D printing significantly increases stability, while reducing the surgical time in the construction of the animal model, significantly affecting the success of the segmental bone defect model in Beagles.

13.
Chem Commun (Camb) ; 60(24): 3335-3338, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38440814

RESUMEN

A novel type of electron donor-acceptor system was built from a nitrogen-rich covalent organic framework (PC) and a polyoxometalate (BW12), fabricating a composite material (BW12@PC-250), which shows significantly improved photocatalytic H2O2 yield (56.4 µM h-1) under full spectrum illumination in pure water, being about 30 times higher than that of PC. This is due to the opening of the electron and proton transport pathway between PC and BW12, which paves a new way for POMs to modulate the photocatalytic reactions of COFs.

14.
Front Surg ; 11: 1345261, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040681

RESUMEN

Background: Hip replacement surgeries are increasing in demand, requiring rigorous improvements to a mature surgical protocol. Postoperative patient dissatisfaction mainly stems from postoperative complications resulting from the inappropriate selection of prostheses to meet the needs of each patient. This results in prosthesis loosening, hospital-related fractures, and postoperative complex pain, which can all be attributed to inappropriate sizing. In this study, we aimed to further explore the intraoperative and postoperative benefits of incorporating computer-aided design (CAD) in preoperative planning for total hip arthroplasty (THA). Methods: A total of 62 patients requiring total hip replacement surgery from January 2021 to December 2021 were collected and randomly divided into a preoperative computer-aided simulated group and a conventional x-ray interpretation group. The accuracy of implant size selection (femoral and acetabular implant) between the preoperative planning and surgical procedure of the two groups was compared. Patient parameters, perioperative Harris hip scores, operative time (skin-to-skin time), surgical blood loss, and postoperative hospital stay were recorded, and the differences between the two groups were statistically compared using a single sample t-test. Results: All patients in the study were successfully operated on and achieved good postoperative functional recovery. With CAD, the selection of the most suitable-sized prosthesis was significantly more accurate compared to the control group (accuracy of the acetabular component between the CAD/control: 80.6%/61.3%, and accuracy of the femoral component: 83.9%/67.7%). Intraoperative blood loss (177.4/231.0 ml, P = 0.002), operation time (84.2 ± 19.8 min/100.3 ± 25.9 min, P = 0.008), duration of hospital stay (6.5 ± 3/9.1 ± 3.9 days, P = 0.003), and postoperative Harris hip score (81.9 ± 6.5/74.7 ± 11.1, P = 0.003) were compared to the control group and showed statistical significance. Conclusion: Incorporating CAD into the preoperative planning of total hip arthroplasty can effectively guide the selection of the most suitable-sized prosthesis, reduce intraoperative blood loss, and promote short-term functional recovery after THA.

15.
Adv Mater ; 36(26): e2400165, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38618658

RESUMEN

Protection of lithium (Li) metal electrode is a core challenge for all-solid-state Li metal batteries (ASSLMBs). Carbon materials with variant structures have shown great effect of Li protection in liquid electrolytes, however, can accelerate the solid-state electrolyte (SE) decomposition owing to the high electronic conductivity, seriously limiting their application in ASSLMBs. Here, a novel strategy is proposed to tailor the carbon materials for efficient Li protection in ASSLMBs, by in situ forming a rational niobium-based Li-rich disordered rock salt (DRS) shell on the carbon materials, providing a favorable percolating Li+ diffusion network for speeding the carbon lithiation, and enabling simultaneously improved lithiophilicity and reduced electronic conductivity of the carbon structure at deep lithiation state. Using the proposed strategy, different carbon materials, such as graphitic carbon paper and carbon nanotubes, are tailored with great ability to speed the interfacial kinetics, homogenize the Li plating/stripping processes, and suppress the SE decompositions, enabling much improved performances of ASSLMBs under various conditions approaching the practical application. This strategy is expected to create a novel roadmap of Li protection for developing reliable high-energy-density ASSLMBs.

16.
Antiviral Res ; 221: 105787, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145756

RESUMEN

Varicella zoster virus (VZV) is associated with herpes zoster (HZ) or herpes zoster ophthalmicus (HZO). All antiviral agents currently licensed for the management of VZV replication via modulating different mechanisms, and the resistance is on the rise. There is a need to develop new antiviral agents with distinct mechanisms of action and adequate safety profiles. Pralatrexate (PDX) is a fourth-generation anti-folate agent with an inhibitory activity on folate (FA) metabolism and has been used as an anti-tumor drug. We observed that PDX possessed potent inhibitory activity against VZV infection. In this study, we reported the antiviral effects and the underlying mechanism of PDX against VZV infection. The results showed that PDX not only inhibited VZV replication in vitro and in mice corneal tissues but also reduced the inflammatory response and apoptosis induced by viral infection. Furthermore, PDX treatment showed a similar anti-VSV inhibitory effect in both in vitro and in vivo models. Mechanistically, PDX inhibited viral replication by interrupting the substrate supply for de novo purine and thymidine synthesis. In conclusion, this study discovered the potent antiviral activity of PDX with a novel mechanism and presented a new strategy for VZV treatment that targets a cellular metabolic mechanism essential for viral replication. The present study provided a new insight into the development of broad-spectrum antiviral agents.


Asunto(s)
Aminopterina/análogos & derivados , Herpes Zóster , Estomatitis Vesicular , Animales , Ratones , Herpesvirus Humano 3 , Estomatitis Vesicular/tratamiento farmacológico , Herpes Zóster/tratamiento farmacológico , Virus de la Estomatitis Vesicular Indiana , Vesiculovirus , Antivirales/farmacología , Antivirales/uso terapéutico , Replicación Viral
17.
Talanta ; 274: 125934, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574533

RESUMEN

Nowadays, novel and efficient signal amplification strategy in electrochemiluminescence (ECL) platform is urgently needed to enhance the sensitivity of biosensor. In this work, the dual ECL signal enhancement strategy was constructed by the interactions of Pd nanoparticles attached covalent organic frameworks (Pd NPs@COFs) with tris (bipyridine) ruthenium (RuP) and Exonuclease III (Exo.III) cycle reaction. Within this strategy, the COFs composite was generated from the covalent reaction between 2-nitro-1,4-phenylenediamine (NPD) and trialdehyde phloroglucinol (Tp), and then animated by glutamate (Glu) to attach the Pd NPs. Next, the "signal on" ECL biosensor was constructed by the coordination assembly of thiolation capture DNA (cDNA) onto the Pd NPs@COFs modified electrode. After the aptamer recognition of progesterone (P4) with hairpin DNA 1 (HP1), the Exo. III cycle reaction was initiated with HP2 to generate free DNA, which hybridized with cDNA to form double-stranded DNA (dsDNA). For that, the RuP was embedded into the groove of dsDNA and achieved the ultrasensitive detection of P4 with a lower limit of detection (LOD) down to 0.45 pM, as well as the excellent selectivity and stability. This work expands the COFs-based materials application in ECL signal amplification and valuable DNA cyclic reaction in biochemical testing field.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Exodesoxirribonucleasas , Nanopartículas del Metal , Estructuras Metalorgánicas , Paladio , Progesterona , Nanopartículas del Metal/química , Estructuras Metalorgánicas/química , Paladio/química , Progesterona/análisis , Progesterona/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Límite de Detección , Mediciones Luminiscentes/métodos , Humanos , ADN/química
18.
Redox Biol ; 75: 103294, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39096854

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a serious interstitial lung disease. However, the definitive diagnosis of IPF is impeded by the limited capabilities of current diagnostic methods, which may fail to capture the optimal timing for treatment. The main goal of this study is to determine the feasibility of a nitroreductase (NTR) responsive probe, 18F-NCRP, for early detection and deterioration monitoring of IPF. 18F-NCRP was obtained with high radiochemical purity (>95 %). BLM-injured mice were established by intratracheal instillation with bleomycin (BLM) and characterized through histological analysis. Longitudinal PET/CT imaging, biodistribution study and in vitro autoradiography were performed. The correlations between the uptake of 18F-NCRP and mean lung density (tested by CT), as well as histopathological characteristics were analyzed. In PET imaging study, 18F-NCRP exhibited promising efficacy in monitoring the progression of IPF, which was earlier than CT. The ratio of uptake in BLM-injured lung to control lung increased from 1.4-fold on D15 to 2.2-fold on D22. Biodistribution data showed a significant lung uptake of 18F-NCRP in BLM-injured mice. There was a strong positive correlation between the 18F-NCRP uptake in the BLM-injured lungs and the histopathological characteristics. Given that, 18F-NCRP PET imaging of NTR, a promising biomarker for investigating the underlying pathogenic mechanism of IPF, is attainable as well as desirable, which might lay the foundation for establishing an NTR-targeted imaging evaluation system of IPF.


Asunto(s)
Diagnóstico Precoz , Fibrosis Pulmonar Idiopática , Nitrorreductasas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Ratones , Nitrorreductasas/metabolismo , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/inducido químicamente , Bleomicina , Pulmón/diagnóstico por imagen , Pulmón/patología , Pulmón/metabolismo , Humanos , Modelos Animales de Enfermedad , Distribución Tisular , Masculino , Radioisótopos de Flúor , Radiofármacos
19.
Dalton Trans ; 53(24): 10226-10234, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38828535

RESUMEN

In aqueous solution, a novel triangle-like tungstovanadate estertin derivative K10H10.5[(W4O15(H2O)2){(SnCH2CH2COO)2(V0.75W10.75/V0.25O39)}{{(SnCH2CH2COO)2(µ-OH)}2(SnCH2CH2COO)(VW10O37)}2]·31H2O ((SnR)8-V3W35, R = CH2CH2COO) was assembled by a conventional synthetic method. (SnR)8-V3W35 is composed of one [VW11O39]7- ({VW11}) and two [VW10O37]9- ({VW10}) units connected by eight [Sn(CH2)2COO]2+ groups and a {W4O19} cluster. Interestingly, there exists a pentagonal bipyramid WO7 polyhedral center surrounded by two SnCO5 and three WO6 octahedra, forming a pentagonal {(WO7)W3(SnR)2} cluster in this polyoxometalate (POM), which is also the first example of a pentagonal structure formed by transition metals (TMs) and main group organometals in the POM family. Furthermore, the structure of this organic-inorganic hybrid POM also exhibits the largest number of organotin groups introduced into the POM system. It was characterized with various physico-chemical and spectroscopic methods, including X-ray single crystal and powder diffraction analysis, 119Sn and 51V NMR, IR, thermal gravimetric analysis (TGA), etc. In addition, the catalytic activity of (SnR)8-V3W35 as a mimic of peroxidase was evaluated using o-phenylenediamine (OPD) as a peroxidase substrate. The major factors influencing the oxidation reaction such as pH, the dosage of (SnR)8-V3W35, and concentrations of OPD and H2O2 were mainly studied. (SnR)8-V3W35 exhibits good peroxidase-like catalytic activity. From another perspective, the successful acquisition of (SnR)8-V3W35 further proves the instability and easy reassembly characteristics of TM-sandwich-type tungstovanadates, which also provides a new assembly strategy for synthesizing POM-estertin derivatives.

20.
Adv Mater ; 36(30): e2402324, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38696823

RESUMEN

Rechargeable all-solid-state lithium metal batteries (ASSLMBs) utilizing inorganic solid-state electrolytes (SSEs) are promising for electric vehicles and large-scale grid energy storage. However, the Li dendrite growth in SSEs still constrains the practical utility of ASSLMBs. To achieve a high dendrite-suppression capability, SSEs must be chemically stable with Li, possess fast Li transfer kinetics, and exhibit high interface energy. Herein, a class of low-cost, eco-friendly, and sustainable oxyhalide-nitride solid electrolytes (ONSEs), denoted as LixNyIz-qLiOH (where x = 3y + z, 0 ≤ q ≤ 0.75), is designed to fulfill all the requirements. As-prepared ONSEs demonstrate chemically stable against Li and high interface energy (>43.08 meV Å-2), effectively restraining Li dendrite growth and the self-degradation at electrode interfaces. Furthermore, improved thermodynamic oxidation stability of ONSEs (>3 V vs Li+/Li, 0.45 V for pure Li3N), arising from the increased ionicity of Li─N bonds, contributes to the stability in ASSLMBs. As a proof-of-concept, the optimized ONSEs possess high ionic conductivity of 0.52 mS cm-1 and achieve long-term cycling of Li||Li symmetric cell for over 500 h. When coupled with the Li3InCl6 SSE for high-voltage cathodes, the bilayer oxyhalide-nitride/Li3InCl6 electrolyte imparts 90% capacity retention over 500 cycles for Li||1 mAh cm-2 LiCoO2 cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA