Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(6): e23575, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38530256

RESUMEN

Ischemia-reperfusion injury (IRI) is one of the primary clinical causes of acute kidney injury (AKI). The key to IRI lies in immune-inflammatory damage, where dendritic cells (DCs) play a central role in eliciting immune responses within the context of inflammation induced by ischemia-reperfusion. Our previous study has confirmed that delayed ischemic preconditioning (DIPC) can reduce the kidney injury by mediating DCs to regulate T-cells. However, the clinical feasibility of DIPC is limited, as pre-clamping of the renal artery is not applicable for the prevention and treatment of ischemia-reperfusion acute kidney injury (I/R-AKI) in clinical patients. Therefore, the infusion of DCs as a substitute for DIPC presents a more viable strategy for preventing renal IRI. In this study, we further evaluated the impact and mechanism of infused tolerogenic CD11c+DCs on the kidneys following IRI by isolating bone marrow-derived dendritic cells and establishing an I/R-AKI model after pre-infusion of DCs. Renal function was significantly improved in the I/R-AKI mouse model after pre-infused with CD11c+DCs. The pro-inflammatory response and oxidative damage were reduced, and the levels of T helper 2 (Th2) cells and related anti-inflammatory cytokines were increased, which was associated with the reduction of autologous DCs maturation mediated by CD11c+DCs and the increase of regulatory T-cells (Tregs). Next, knocking out CD11c+DCs, we found that the reduced immune protection of tolerogenic CD11c+DCs reinfusion was related to the absence of own DCs. Together, pre-infusion of tolerogenic CD11c+DCs can replace the regulatory of DIPC on DCs and T-cells to alleviate I/R-AKI. DC vaccine is expected to be a novel avenue to prevent and treat I/R-AKI.


Asunto(s)
Lesión Renal Aguda , Precondicionamiento Isquémico , Daño por Reperfusión , Humanos , Animales , Ratones , Riñón , Isquemia , Lesión Renal Aguda/prevención & control , Daño por Reperfusión/prevención & control , Reperfusión , Células Dendríticas
2.
Small ; 20(8): e2307220, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37828643

RESUMEN

Systematic management of infected wounds requires simultaneous antiinfection and wound healing, which has become the current treatment dilemma. Recently, a multifunctional silver nanoclusters (AgNCs)-based hydrogel dressing to meet these demands is developed. Here a diblock DNA with a cytosine-rich fragment (as AgNCs template) and a guanine-rich fragment (to form G-quadruplex/hemin DNAzyme, termed G4/hemin) is designed, for G4/hemin functionalization of AgNCs. Inside bacteria, G4/hemin can not only accelerate the oxidative release of Ag+ from AgNCs but also generate reactive oxygen species (ROS) via catalase- and peroxidase-mimic activities, which enhance the antibacterial effect. On the other hand, the AgNCs exhibit robust anti-inflammatory and antioxidative activities to switch M1 macrophages into M2 phenotype, which promotes wound healing. Moreover, the hemin is released to upregulate the heme oxygenase-1, an intracellular enzyme that can relieve oxidative stress, which significantly alleviates the cytotoxicity of silver. As a result, such silver-based dressing achieves potent therapeutic efficacy on infected wounds with excellent biosafety.


Asunto(s)
ADN Catalítico , Nanopartículas del Metal , Plata , Hemina , ADN , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Hidrogeles
3.
Phys Rev Lett ; 132(5): 056301, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38364160

RESUMEN

Recent experiments reported an antisymmetric planar Hall effect, where the Hall current is odd in the in plane magnetic field and scales linearly with both electric and magnetic fields applied. Existing theories rely exclusively on a spin origin, which requires spin-orbit coupling to take effect. Here, we develop a general theory for the intrinsic planar Hall effect (IPHE), highlighting a previously unknown orbital mechanism and connecting it to a band geometric quantity-the anomalous orbital polarizability (AOP). Importantly, the orbital mechanism does not request spin-orbit coupling, so sizable IPHE can occur and is dominated by an orbital contribution in systems with weak spin-orbit coupling. Combined with first-principles calculations, we demonstrate our theory with quantitative evaluation for bulk materials TaSb_{2}, NbAs_{2}, and SrAs_{3}. We further show that AOP and its associated orbital IPHE can be greatly enhanced at topological band crossings, offering a new way to probe topological materials.

4.
Phys Rev Lett ; 132(10): 106601, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38518320

RESUMEN

It has been theoretically predicted that perturbation of the Berry curvature by electromagnetic fields gives rise to intrinsic nonlinear anomalous Hall effects that are independent of scattering. Two types of nonlinear anomalous Hall effects are expected. The electric nonlinear Hall effect has recently begun to receive attention, while very few studies are concerned with the magneto-nonlinear Hall effect. Here, we combine experiment and first-principles calculations to show that the kagome ferromagnet Fe_{3}Sn_{2} displays such a magneto-nonlinear Hall effect. By systematic field angular and temperature-dependent transport measurements, we unambiguously identify a large anomalous Hall current that is linear in both applied in-plane electric and magnetic fields, utilizing a unique in-plane configuration. We clarify its dominant orbital origin and connect it to the magneto-nonlinear Hall effect. The effect is governed by the intrinsic quantum geometric properties of Bloch electrons. Our results demonstrate the significance of the quantum geometry of electron wave functions from the orbital degree of freedom and open up a new direction in Hall transport effects.

5.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33986115

RESUMEN

Whole-genome duplication (WGD) plays important roles in plant evolution and function, yet little is known about how WGD underlies metabolic diversification of natural products that bear significant medicinal properties, especially in nonmodel trees. Here, we reveal how WGD laid the foundation for co-option and differentiation of medicinally important ursane triterpene pathway duplicates, generating distinct chemotypes between species and between developmental stages in the apple tribe. After generating chromosome-level assemblies of a widely cultivated loquat variety and Gillenia trifoliata, we define differentially evolved, duplicated gene pathways and date the WGD in the apple tribe at 13.5 to 27.1 Mya, much more recent than previously thought. We then functionally characterize contrasting metabolic pathways responsible for major triterpene biosynthesis in G. trifoliata and loquat, which pre- and postdate the Maleae WGD, respectively. Our work mechanistically details the metabolic diversity that arose post-WGD and provides insights into the genomic basis of medicinal properties of loquat, which has been used in both traditional and modern medicines.


Asunto(s)
Eriobotrya/genética , Duplicación de Gen , Poliploidía , Triterpenos/metabolismo , Vías Biosintéticas , Eriobotrya/metabolismo , Genoma de Planta
6.
Nano Lett ; 23(16): 7358-7363, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37535707

RESUMEN

Real Chern insulators have attracted great interest, but so far, their material realization is limited to nonmagnetic crystals and systems without spin-orbit coupling. Here, we reveal the magnetic real Chern insulator (MRCI) state in a recently synthesized metal-organic framework material Co3(HITP)2. Its ground state with in-plane ferromagnetic ordering hosts a nontrivial real Chern number, enabled by the C2zT symmetry and robustness against spin-orbit coupling. Distinct from previous nonmagnetic examples, the topological corner zero modes of MRCIs are spin-polarized. Furthermore, under small tensile strains, the material undergoes a topological phase transition from the MRCI to a magnetic double-Weyl semimetal phase, via a pseudospin-1 critical state. Similar physics can also be found in closely related materials Mn3(HITP)2 and Fe3(HITP)2, which also exist. Possible experimental detections and implications of an emerging magnetic flat band in the system are discussed.

7.
J Med Virol ; 95(1): e28255, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36284455

RESUMEN

Kaposi's sarcoma (KS) is the second most common tumor in people infected with human immunodeficiency virus worldwide, but its pathogenesis is still unclear. In this study, we discovered that the expression of GATA-binding protein 3 (GATA3) was lowly expressed in KS tissues and KSHV-infected cells, while microRNA-155 (miR-155) was highly expressed in KS serum and KSHV-infected cells. miR-155 promoted the proliferation, migration and invasion of KSHV infection by targeting GATA3. Further, The KSHV-encoded protein, the Latency associated nuclear antigen (LANA), promotes the proliferation, migration and invasion of KSHV-infected cells by regulating the miR-155/GATA3 axis. Regarding the molecular mechanism, c-Jun and c-Fos interact to form a complex. LANA upregulates the expression of c-Jun and c-Fos and enhances the formation of c-Jun/c-Fos complex. The complex binds to the -95∼-100 bp site of miR-155 promoter and transcriptionally activates miR-155. All in all, LANA enhances the c-Jun/c-Fos interaction, resulting in enhanced transcriptional regulation of miR-155 by the c-Jun/c-Fos complex, thereby downregulating GATA3 and promoting the proliferation, migration and invasion of KSHV-infected cells. The discovery of LANA/c-Jun/c-Fos/miR-155/GATA3 further refines the pathogenesis of KS, potentially opening a new avenue for developing effective drugs against KS.


Asunto(s)
Herpesvirus Humano 8 , MicroARNs , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Línea Celular , Antígenos Virales/metabolismo , Antígenos Nucleares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo
8.
Amino Acids ; 55(4): 499-507, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36715768

RESUMEN

During trauma and surgery, bleeding is a major concern. One of the crucial strategies for hemostasis is the use of biological hemostatic material. Herein, we reported an amino acid-based hydrogel FmocF-ADP hydrogel, which consisted of N-[(9H-fluoren-9-ylmethoxy) carbonyl]-3-phenyl-L-alanine (FmocF) and adenosine diphosphate (ADP) sodium solution. The hydrogel was created by FmocF self-assembling to nanofiber in ADP sodium solution and then cross-linking to hydrogel. FmocF-ADP hydrogel showed good in vitro coagulation activity as measured by whole blood clotting assays, platelet clotting assays, platelet activation assays, and platelet adhesion assays. Further, it was noted to reveal an exceptional in vivo hemostatic effect in a mouse liver bleeding model. Together with the previous report of the good biocompatibility and antimicrobial activity of FmocF hydrogel, our study would extend the biomedical application of FmocF hydrogel. In conclusion, the present study would provide a constructive strategy for the development of new antimicrobial and hemostatic materials or develop a potential hemostatic material.


Asunto(s)
Hemostáticos , Animales , Ratones , Hemostáticos/farmacología , Hidrogeles/farmacología , Hemostasis , Adenosina Difosfato/farmacología
9.
Environ Sci Technol ; 57(1): 790-800, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36516830

RESUMEN

Widespread antibiotic resistance genes (ARGs) have emerged as a focus of attention for public health. Transformation is essential for ARGs dissemination in soils and associated environments; however, the mechanisms of how soil components contribute to the transformation of ARGs remain elusive. Here we demonstrate that three representative mineral-humic acid (HA) composites exert contrasting influence on the transformation of plasmid-borne ARGs in Bacillus subtilis. Mineral surface-bound HA facilitated transformation in kaolinite and montmorillonite systems, while an inhibitory effect of HA was observed for goethite. The elevated transformation by HA-coated kaolinite was mainly attributed to the enhanced activity of competence-stimulating factor (CSF), while increased transformation by montmorillonite-HA composites was assigned to the weakened adsorption affinity of DNA and enhanced gene expression induced by flagella-driven cell motility. In goethite system, HA played an overriding role in suppressing transformation via alleviation of cell membrane damage. The results obtained offer insights into the divergent mechanisms of humic substances in modulating bacterial transformation by soil minerals. Our findings would help for a better understanding on the fate of ARGs in soil systems and provide potentials for the utilization of soil components, particularly organic matter, to mitigate the spread of ARGs in a range of settings.


Asunto(s)
Sustancias Húmicas , Caolín , Bentonita , Antibacterianos , Minerales , Suelo , Farmacorresistencia Microbiana/genética , Adsorción
10.
Nano Lett ; 22(4): 1688-1693, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35148114

RESUMEN

The diode effect means that carriers can only flow in one direction but not the other. While diode effects for electron charge, spin, or photon have been widely discussed, it remains a question whether a chiral phonon diode can be realized, which utilizes the chiral degree of freedom of lattice vibrations. In this work, we reveal an intrinsic connection between the chiralities of a crystal structure and its phonon excitations, which naturally leads to the chiral phonon diode effect in chiral crystals. At a certain frequency, phonons with a definite chirality can propagate only in one direction but not the opposite. We demonstrate the idea in concrete materials including bulk Te and α-quartz (SiO2). Our work discovers the fundamental physics of chirality coupling between different levels of a system, and the predicted effect will provide a new route to control phonon transport and design information devices.

11.
Nano Lett ; 22(13): 5592-5599, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35729076

RESUMEN

The number of semiconducting MXenes with direct band gaps is extremely low; thus, it is highly desirable to broaden the MXene family beyond carbides and nitrides to expand the palette of desired chemical and physical properties. Here, we theoretically report the existence of the single-layer (SL) dititanium oxide 2H-Ti2O MOene (MXene-like 2D transition oxides), showing an Ising superconducting feature. Moreover, SL halogenated 2H- and 1T-Ti2O monolayers display tunable semiconducting features and strong light-harvesting ability. In addition, the external strains can induce Weyl fermions via quantum phase transition in 2H-Ti2OF2 and Ti2OCl2 monolayers. Specifically, 2H- and 1T-Ti2OF2 are direct semiconductors with band gaps of 0.82 and 1.18 eV, respectively. Furthermore, the carrier lifetimes of SL 2H- and 1T-Ti2OF2 are evaluated to be 0.39 and 2.8 ns, respectively. This study extends emerging phenomena in a rich family of 2D MXene-like MOene materials, which provides a novel platform for next-generation optoelectronic and photovoltaic fields.

12.
J Am Chem Soc ; 144(9): 3949-3956, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35200018

RESUMEN

Intertwisted bilayers of two-dimensional (2D) materials can host low-energy flat bands, which offer opportunity to investigate many intriguing physics associated with strong electron correlations. In the existing systems, ultra-flat bands only emerge at very small twist angles less than a few degrees, which poses a challenge for experimental studies and practical applications. Here, we propose a new design principle to achieve low-energy ultra-flat bands with increased twist angles. The key condition is to have a 2D semiconducting material with a large energy difference of band edges controlled by stacking. We show that the interlayer interaction leads to defect-like states under twisting, which forms a flat band in the semiconducting band gap with dispersion strongly suppressed by the large energy barriers in the moiré superlattice even for large twist angles. We explicitly demonstrate our idea in bilayer α-In2Se3 and bilayer InSe. For bilayer α-In2Se3, we show that a twist angle of ∼13.2° is sufficient to achieve the band flatness comparable to that of twist bilayer graphene at the magic angle ∼1.1°. In addition, the appearance of ultra-flat bands here is not sensitive to the twist angle as in bilayer graphene, and it can be further controlled by external gate fields. Our finding provides a new route to achieve ultra-flat bands other than reducing the twist angles and paves the way toward engineering such flat bands in a large family of 2D materials.

13.
Plant Cell Environ ; 45(2): 542-555, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34866195

RESUMEN

Clathrin-mediated vesicle trafficking (CMVT) is a fundamental process in all eukaryotic species, and indispensable to organism's growth and development. Recently, it has been suggested that CMVT also plays important roles in the regulation of plant immunity. However, the molecular link between CMVT and plant immunity is largely unknown. SCY1-LIKE2 (SCYL2) is evolutionally conserved among the eukaryote species. Loss-of-function of SCYL2 in Arabidopsis led to severe growth defects. Here, we show that mutation of OsSCYL2 in rice gave rise to a novel phenotype-hypersensitive response-like (HR) cell death in a light-dependent manner. Although mutants of OsSCYL2 showed additional defects in the photosynthetic system, they exhibited enhanced resistance to bacterial pathogens. Subcellular localisation showed that OsSCYL2 localized at Golgi, trans-Golgi network and prevacuolar compartment. OsSCYL2 interacted with OsSPL28, subunit of a clathrin-associated adaptor protein that is known to regulate HR-like cell death in rice. We further showed that OsSCYL2-OsSPL28 interaction is mediated by OsCHC1. Collectively, we characterized a novel component of the CMVT pathway in the regulation of plant immunity. Our work also revealed unidentified new functions of the very conserved SCYL2. It thus may provide new breeding targets to achieve both high yield and enhanced resistance in crops.


Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Oryza/inmunología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Oryza/genética , Proteínas de Plantas/metabolismo
14.
Respir Res ; 23(1): 104, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484551

RESUMEN

BACKGROUND: Ionizing radiation (IR) can induce pulmonary fibrosis by causing epithelial mesenchymal transition (EMT), but the exact mechanism has not been elucidated. To investigate the molecular mechanism of how radiation induces pulmonary fibrosis by altering miR-486-3p content and thus inducing EMT. METHODS: The changes of miR-486-3p in cells after irradiation were detected by RT-qPCR. Western blot was used to detect the changes of cellular epithelial marker protein E-cadherin, mesenchymal marker N-cadherin, Vimentin and other proteins. The target gene of miR-486-3p was predicted by bioinformatics method and the binding site was verified by dual luciferase reporter system. In vivo experiments, adeno-associated virus (AAV) was used to carry miR-486-3p mimic to lung. Radiation-induced pulmonary fibrosis (RIPF) model was constructed by 25Gy60Co γ-rays. The structural changes of mouse lung were observed by HE and Masson staining. The expression of relevant proteins in mice was detected by immunohistochemistry. RESULTS: IR could decrease the miR-486-3p levels in vitro and in vivo, and that effect was closely correlated to the occurrence of RIPF. The expression of Snail, which induces EMT, was shown to be restrained by miR-486-3p. Therefore, knockdown of Snail blocked the EMT process induced by radiation or knockdown of miR-486-3p. In addition, the molecular mechanism underlying the IR-induced miRNA level reduction was explored. The increased in BCL6 could inhibit the formation of pri-miR-486-3p, thereby reducing the levels of miR-486-3p in the alveolar epithelial cells, which would otherwise promote EMT and contribute to RIPF by targeting Snail. CONCLUSION: IR can exacerbate RIPF in mice by activating the transcription factor BCL6, which inhibits the transcription of miR-486-3p and decreases its content, which in turn increases the content of the target gene slug and triggers EMT.


Asunto(s)
Lesión Pulmonar , MicroARNs , Fibrosis Pulmonar , Animales , Transición Epitelial-Mesenquimal/fisiología , Pulmón/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo
15.
Environ Sci Technol ; 56(15): 10656-10667, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35876052

RESUMEN

Bacterial metal detoxification mechanisms have been well studied for centuries in pure culture systems. However, profiling metal resistance determinants at the community level is still a challenge due to the lack of comprehensive and reliable quantification tools. Here, a novel high-throughput quantitative polymerase chain reaction (HT-qPCR) chip, termed the metal resistance gene (MRG) chip, has been developed for the quantification of genes involved in the homeostasis of 9 metals. The MRG chip contains 77 newly designed degenerate primer sets and 9 published primer sets covering 56 metal resistance genes. Computational evaluation of the taxonomic coverage indicated that the MRG chip had a broad coverage matching 2 kingdoms, 29 phyla, 64 classes, 130 orders, 226 families, and 382 genera. Temperature gradient PCR and HT-qPCR verified that 57 °C was the optimal annealing temperature, with amplification efficiencies of over 94% primer sets achieving 80-110%, with R2 > 0.993. Both computational evaluation and the melting curve analysis of HT-qPCR validated a high specificity. The MRG chip has been successfully applied to characterize the distribution of diverse metal resistance determinants in natural and human-related environments, confirming its wide scope of application. Collectively, the MRG chip is a powerful and efficient high-throughput quantification tool for exploring the microbial metal resistome.


Asunto(s)
Bacterias , Metales Pesados , Bacterias/genética , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Ecotoxicol Environ Saf ; 242: 113858, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35809393

RESUMEN

Carbon nanotubes (CNTs) have become far and wide used in a number of technical and merchant applications as a result of substantial advances in nanotechnology, therein single-walled carbon nanotubes (SWCNT) are one of the most promising nanoparticles. Inhaling CNTs has been linked to a variety of health problems, including lung fibrosis. Glycyrrhetinic acid 3-O-mono-ß-D-glucuronide (GAMG), a natural sweetener, has anti-inflammatory and antioxidant capacities. The purpose of this study was to evaluate the potential for GAMG to alleviate SWCNT-induced lung inflammation and fibrosis. During days 3-28 after SWCNT intratracheal administration, we observed a remarkable increase of IL-1ß, IL-6 and TNF-α in bronchoalveolar lavage fluid (BALF) on day 3 and collagen deposition on day 28. GAMG treatment remarkably ameliorated SWCNT-induced pulmonary fibrosis and attenuated SWCNT-induced inflammation and collagen deposition, and suppressed the activation of PI3K/AKT/NF-κB signaling pathway in the lungs. Therefore, GAMG has a therapeutic potential for the treatment of SWCNT-induced pulmonary fibrosis. Targeting PI3K/AKT/NF-κB signaling pathway may be a potential therapeutic approach to treat pulmonary fibrosis in mice with SWCNT.


Asunto(s)
Ácido Glicirretínico , Nanotubos de Carbono , Neumonía , Fibrosis Pulmonar , Animales , Colágeno/metabolismo , Fibrosis , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/toxicidad , Pulmón/metabolismo , Ratones , FN-kappa B/metabolismo , Nanotubos de Carbono/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Neumonía/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Transducción de Señal
17.
Nano Lett ; 21(7): 3060-3065, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33764075

RESUMEN

Chiral phonons were initially proposed and experimentally verified in two-dimensional (2D) systems. Their intriguing effects have generated profound impacts on multiple research fields. However, all chiral phonons reported to date are constrained to be local, in the sense that their group velocities vanish identically. Here, we propose the concept of propagating 3D chiral phonons, which can transport the information on chirality and angular momentum. Guided by the necessary conditions and using first-principles calculations, we demonstrate their existence in WN2. The chirality, group velocity, and pseudoangular momentum are analyzed. Based on their selective coupling with valley electrons and photons, we propose an experimental setup to detect the unique feature of propagating chiral phonons. Our work endows chiral phonons with a crucial character-the ability to propagate and transport quantized information, which creates a new research direction and opens up the possibility to design novel phononic quantum devices.

18.
Sleep Breath ; 25(4): 2213-2219, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33754249

RESUMEN

BACKGROUND: The outbreak of Coronavirus Disease-2019 (COVID-19) caused great psychological distress often with comorbid insomnia. Insomnia is common in patients with COVID-19 admitted to mobile cabin hospitals. Insomnia may lead to immune dysfunction, a condition not conducive to recovery from COVID-19. The use of sedative-hypnotic drugs is limited by their inhibitory effect on the respiratory system. A paucity of research is available regarding psychotherapy interventions to improve insomnia symptoms among  patients with COVID-19. In the general population, sleep problems are more common in women than in men; insomnia in women patients requires special attention. The aim of this study was to develop simplified-cognitive behavioral therapy for insomnia (S-CBTI) for patients with COVID-19 and comorbid insomnia symptoms and to verify its effectiveness through a self-control trial. A second aim was to compare the effectiveness of S-CBTI between acute and chronic insomnia among women with COVID-19 and comorbid insomnia symptoms in Wuhan Jianghan Cabin Hospital. METHODS: S-CBTI consisted of education on COVID-19 and sleep hygiene, stimulus control, sleep restriction, and self-suggestion relaxation training over a period of two consecutive weeks. Of 67 women, 66 completed psychological intervention and baseline and post-intervention assessments. There were 31 women with acute insomnia and 35 with chronic insomnia. The Insomnia Severity Index (ISI) score and self-compiled sleep data were assessed at baseline and post-intervention, and subjective sleep evaluations were assessed at days 4, 7, 12, and 14. RESULTS: The ISI score, sleep latency, night sleep time, and sleep efficiency were statistically significantlly improved from baseline to post-intervention by paired T-test. After the intervention, the mean ISI score of the acute insomnia group was lower than that of the chronic insomnia group. The reduction of the ISI score and the improvement of sleep time from baseline to post-intervention in the acute insomnia group were greater than those in the chronic insomnia group. Utilization of sedative-hypnotic drugs in the acute insomnia group was less than that in the chronic insomnia group, and the difference was statistically significant. CONCLUSIONS: S-CBTI can improve the insomnia symptoms of women with COVID-19 in mobile cabin hospitals, especially for stress-related acute insomnia.


Asunto(s)
COVID-19/complicaciones , Terapia Cognitivo-Conductual , Evaluación de Resultado en la Atención de Salud , Trastornos del Inicio y del Mantenimiento del Sueño/etiología , Trastornos del Inicio y del Mantenimiento del Sueño/terapia , Enfermedad Aguda , Adolescente , Adulto , China , Enfermedad Crónica , Femenino , Humanos , Persona de Mediana Edad , Unidades Móviles de Salud , Educación del Paciente como Asunto , Terapia por Relajación , Índice de Severidad de la Enfermedad , Adulto Joven
19.
Cancer Sci ; 111(10): 3600-3612, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32770813

RESUMEN

Prostate cancer (PCa) continues to be the most common, noncutaneous cancer in men. Bone is the most frequent site of PCa metastases, and up to 90% of patients with advanced PCa develop bone metastases. An altered bone marrow microenvironment, induced by obesity, is a significant mediator for the bone tropism of PCa. However, the specific molecular mechanisms by which obesity causes changes in the bone marrow microenvironment, leading to PCa bone metastasis, are not fully understood. Our results demonstrate that a high-fat diet (HFD) leads to dyslipidemia and changes in bone marrow of nude mice: an increase in the area and number of adipocytes and a reduction in the area and number of osteoblasts. Moreover, a HFD promoted cyclooxygenase 2 (COX2) expression and inhibited osteoprotegerin (OPG) expression in the bone microenvironment. Additionally, the total level of free fatty acids (FFAs) and caprylic acid (C8:0) was significantly higher in PCa patients with bone metastases. In vitro, caprylic acid (C8:0) promoted bone mesenchymal stem cell (MSC)-derived adipocytic differentiation, COX2 expression, and prostaglandin E2 (PGE2) secretion, whereas osteoblastic differentiation and OPG expression were reduced. Furthermore, caprylic acid (C8:0)-treated adipocytes promoted the invasion and migration of PCa cells. Taken together, our findings suggest caprylic acid (C8:0) promotes bone metastasis of PCa by dysregulated adipo-osteogenic balance of bone marrow.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipocitos/patología , Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Neoplasias Óseas/patología , Caprilatos/farmacología , Neoplasias de la Próstata/patología , Adipocitos/metabolismo , Animales , Médula Ósea/metabolismo , Neoplasias Óseas/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Ciclooxigenasa 2/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/patología , Células PC-3 , Neoplasias de la Próstata/metabolismo , Microambiente Tumoral/efectos de los fármacos
20.
Funct Integr Genomics ; 20(4): 497-508, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31897824

RESUMEN

The voltage-gated chloride channel (CLC) superfamily is one of the most important anion channels that is widely distributed in bacteria and plants. CLC is involved in transporting various anions such as chloride (Cl-) and fluoride (F-) in and out of cells. Although Camellia sinensis is a hyper-accumulated F plant, there is no studies on the CLC gene superfamily in the tea plant. Here, 8 CLC genes were identified from C. sinensis and they were named CsCLC1-8. The structure of CsCLC genes and the proteins were not conserved; the number of exons varied from 3 to 24, and the number of transmembrane domains contained 2 to 10. Furthermore, phylogenetic analysis revealed that CsCLC4-8 in subclass I contained the typical conserved domains GxGIPE (I), GKxGPxxH (II) and PxxGxLF (III), and CsCLC1-3 in subclass II did not contain any of the three conserved residues. We measured the expression levels of CsCLCs in roots, stems and leaves to assess the responses to different concentrations of Cl- and F-. The result indicated that CsCLCs participated in subfunctionalization in response to Cl- and F-, and CsCLC1-3 was more sensitive to F- treatments than CsCLC4-8, CsCLC6 and CsCLC7 may participate in absorption and long-distance transport of Cl-.


Asunto(s)
Camellia sinensis/genética , Canales de Cloruro/genética , Proteínas de Plantas/genética , Camellia sinensis/metabolismo , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Secuencia Conservada , Genoma de Planta , Familia de Multigenes , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA