Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542857

RESUMEN

To produce functional protective textiles with minimal environmental footprints, we developed durable superhydrophobic antimicrobial textiles. These textiles are characterized by a micro-pleated structure on polyester fiber surfaces, achieved through a novel plasma impregnation crosslinking process. This process involved the use of water as the dispersion medium, water-soluble nanosilver monomers for antimicrobial efficacy, fluorine-free polydimethylsiloxane (PDMS) for hydrophobicity, and polyester (PET) fabric as the base material. The altered surface properties of these fabrics were extensively analyzed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectrometry (XPS), thermogravimetric analysis (TGA), and water contact angle (WCA) measurements. The antimicrobial performance of the strains was evaluated using Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. After treatment, the fabrics exhibited enhanced hydrophobic and antimicrobial properties, which was attributed to the presence of a micro-pleated structure and nanosilver. The modified textiles demonstrated a static WCA of approximately 154° and an impressive 99.99% inhibition rate against both test microbes. Notably, the WCA remained above 140° even after 500 washing cycles or 3000 friction cycles.


Asunto(s)
Antiinfecciosos , Poliésteres , Plata , Poliésteres/química , Textiles , Antiinfecciosos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Agua/química
2.
Virol J ; 14(1): 243, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29282065

RESUMEN

BACKGROUND: Enterovirus (EV) infection has been a serious health issue in Asia-Pacific region. It has been indicated that the occurrence of fatal hand foot and mouth disease (HFMD) cases following EV71 infection is mainly attributed to pulmonary edema. However, the development of pulmonary disorders after EV71 infection remains largely unknown. To establish an EV71-infected animal model and further explore the underlying association of central nervous system (CNS) invasion with pulmonary edema, we isolated a clinical source EV71 strain (ZZ1350) from a severe case in Henan Province. METHODS: We evaluated the cytotoxicity of ZZ1350 strain and the susceptibility in 3-day-old BALB/c mice with intraperitoneal, intracerebral and intramuscular inoculation. Various histopathological and immunohistochemical techniques were applied to determine the target organs or tissue damage after infection. Correlation analysis was used to identify the relationship between CNS injury and pulmonary disorders. RESULTS: Our experimental results suggested that ZZ1350 (C4 subtype) had high cytotoxicity against African green monkey kidney (Vero) cells and human rhabdomyosarcoma (RD) cells and neonatal BALB/c mice were highly susceptible to the infection with ZZ1350 through three different inoculation routes (2 × 106 pfu/mouse) exhibiting severe neurological and respiratory symptoms that were similar to clinical observation. Viral replication was found in brain, spinal cord, skeletal muscle, lung, spleen, liver, heart of infected mice and these sections also showed histopathological changes. We found that brain histology score was positive correlated with lung histology score in total experimental mice and mice under the three inoculation routes (P < 0.05). At the same time, there were positive correlations between spinal cord score and lung score in total experimental mice and mice with intracerebral inoculation (P < 0.05). CONCLUSIONS: ZZ1350 strain is effective to establish animal model of EV71 infection with severe neurological and respiratory symptoms. The development of pulmonary disorders after EV71 infection is associated with severity of CNS damage.


Asunto(s)
Lesiones Encefálicas/virología , Enterovirus Humano A/patogenicidad , Infecciones por Enterovirus/complicaciones , Pulmón/virología , Edema Pulmonar/virología , Traumatismos de la Médula Espinal/virología , Animales , Lesiones Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular , China , Chlorocebus aethiops , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Enterovirus Humano A/aislamiento & purificación , Infecciones por Enterovirus/patología , Humanos , Pulmón/patología , Ratones , Traumatismos de la Médula Espinal/patología , Células Vero
4.
Materials (Basel) ; 16(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36614386

RESUMEN

The superhydrophobic surface can be prepared by two methods; one is by reducing the surface energy, and the other is by constructing a micro-nano rough structure. To achieve high superhydrophobic performance in terms of durability, the firm combination of hydrophobic coating and substrate is particularly important. Here, we use polydimethylsiloxane (PDMS) as a low surface energy monomer, water-borne polyurethane (WPU) as a dispersing aid, and use high-power ultrasound to disperse PDMS in water to make emulsion. The polyester matrix is etched by atmospheric plasma, dipped in PDMS emulsion, dried, and finally baked to induce PDMS on the surface of polyester fiber to cross-link into film. A series of tests on the self-cleaning polyester fabric prepared by this method show that when the concentration of PDMS is 8 g/L and the mass ratio of PDMS to WPU is 20:1, the water contact angle (WCA) reaches the maximum value of 148.2°, which decreases to 141.5° after 200 times of washing and 138.6° after 5000 times of rubbing. Before and after PDMS coating, the tensile strength of polyester fabric increases from 489.4 N to 536.4 N, and the water vapor transmission decreases from 13,535.7 g/(m2·d) to 12,224.3 g/(m2·d). This research is helpful to the large-scale production of self-cleaning polyester fabric. In the future, on the basis of this research, we will add functional powder to endow self-cleaning polyester fabric with higher hydrophobicity and other properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA