Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Protein Expr Purif ; 223: 106554, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39002828

RESUMEN

Neuritin plays an important role in promoting nerve injury repair and maintaining synaptic plasticity, making it a potential therapeutic target for the treatment of nerve injury and neurodegenerative diseases. The present study aimed to obtain an active, unlabeled neuritin protein. Initially, a neuritin protein expression system with an enterokinase site was constructed in Escherichia coli. After optimizing induction conditions and screening for high expression, a neuritin recombinant protein with purity exceeding 85 % was obtained through Ni-affinity chromatography. Subsequently, unlabeled neuritin with a molecular weight of 11 kDa was obtained through the enzymatic cleavage of the His label using an enterokinase. Furthermore, a neuritin recombinant protein with purity exceeding 95 % was obtained using gel chromatography. Functional investigations revealed that neurite outgrowth of PC12 cells was stimulated by the isolated neuritin. This study establishes a method to obtain active and unlabeled neuritin protein, providing a foundation for subsequent research on its biological functions.


Asunto(s)
Escherichia coli , Proteínas Ligadas a GPI , Proteínas Recombinantes , Animales , Células PC12 , Ratas , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Neuropéptidos/genética , Neuropéptidos/química , Neuropéptidos/metabolismo , Enteropeptidasa/metabolismo , Enteropeptidasa/genética , Enteropeptidasa/química , Cromatografía de Afinidad , Proyección Neuronal/efectos de los fármacos , Cromatografía en Gel , Expresión Génica
2.
Biomacromolecules ; 25(5): 2980-2989, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38587905

RESUMEN

We developed a supramolecular system for codelivery of doxorubicin (Dox) and p53 gene based on a ß-CD-containing star-shaped cationic polymer. First, a star-shaped cationic polymer consisting of a ß-CD core and 3 arms of oligoethylenimine (OEI), named CD-OEI, was used to form a supramolecular inclusion complex with hydrophobic Dox. The CD-OEI/Dox complex was subsequently used to condense plasmid DNA via electrostatic interactions to form CD-OEI/Dox/DNA polyplex nanoparticles with positive surface charges that enhanced the cellular uptake of both Dox and DNA. This supramolecular drug and gene codelivery system showed high gene transfection efficiency and effective protein expression in cancer cells. The codelivery of Dox and DNA encoding the p53 gene resulted in reduced cell viability and enhanced antitumor effects at low Dox concentrations. With its enhanced cellular uptake and anticancer efficacy, the system holds promise as a delivery carrier for potential combination cancer therapies.


Asunto(s)
Doxorrubicina , Nanopartículas , Electricidad Estática , Proteína p53 Supresora de Tumor , Humanos , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administración & dosificación , beta-Ciclodextrinas/química , Supervivencia Celular/efectos de los fármacos , ADN/química , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Técnicas de Transferencia de Gen , Nanopartículas/química , Proteína p53 Supresora de Tumor/genética
3.
Protein Expr Purif ; 212: 106344, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37567400

RESUMEN

Neuritin is a vital neurotrophin that plays an essential role in recovery from nerve injury and neurodegenerative diseases and may become a new target for treating these conditions. However, improving neuritin protein stability is an urgent problem. In this study, to obtain active and stable neuritin proteins, we added a carboxyl-terminal peptide (CTP) sequence containing four O-linked glycosylation sites to the C-terminus of neuritin and cloned it into the Chinese hamster ovary (CHO) expression system. The neuritin-CTP protein was purified using a His-Tag purification strategy after G418 screening of stable high-expression cell lines. Ultimately, we obtained neuritin-CTP protein with a purity >90%. Functional analyses showed that the purified neuritin-CTP protein promoted the neurite outgrowth of PC12 cells, and stability experiments showed that neuritin stability was increased by adding CTP. These results indicate that neuritin protein-CTP fusion effectively increases stability without affecting secretion and activity. This study offers a sound strategy for improving the stability of neuritin protein and provides material conditions for further study of the function of neuritin.


Asunto(s)
Células CHO , Ratas , Cricetinae , Animales , Cricetulus , Secuencia de Aminoácidos , Glicosilación , Proteínas Ligadas a GPI
4.
Acta Biochim Biophys Sin (Shanghai) ; 55(10): 1650-1658, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37249336

RESUMEN

Neuritin plays a key role in neural development and regeneration by promoting neurite outgrowth and synapse maturation. Our previous research revealed the mechanism by which neuritin inhibits Notch signaling through interaction with neuralized-like 1 (Neurl1) to promote neurite growth. However, how neuritin regulates Notch signaling through Neurl1 has not been elucidated. Here, we first confirm that neuritin is an upstream regulator of Neurl1 and inhibits Notch signaling through Neurl1. Neurl1 is an E3 ubiquitin ligase that can promote ubiquitination and endocytosis of the Notch1 ligand Jagged1. Therefore, we observe the effect of neuritin on the ligase activity of Neurl1. The results indicate that neuritin inhibits Neurl1 activity by reducing the ubiquitination level and endocytosis of the target protein Jagged1. Moreover, we find that decreased activity of Neurl1 results in reduced expression of Notch receptor Notch intracellular domain (NICD) and downstream target gene hairy and enhancer of split-1 ( HES1). Furthermore, we investigate how neuritin affects Neurl1 enzyme activity. The results show that neuritin not only weakens the affinity between Neurl1 and Jagged1 but also promotes the degradation of Neurl1 by the 26S proteasome pathway. Taken together, our results suggest that neuritin negatively regulates Notch signaling by inhibiting the activity of Neurl1, promoting the degradation of Neurl1 and weakening the affinity of Neurl1 for Jagged1. Our study clarifies the molecular mechanisms of neuritin in regulating the Notch signaling pathway and provides new clues about how neuritin mediates neural regeneration and plasticity.


Asunto(s)
Regeneración Nerviosa , Plasticidad Neuronal , Receptores Notch , Ubiquitina-Proteína Ligasas , Ligandos , Regeneración Nerviosa/genética , Plasticidad Neuronal/genética , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
5.
Biomacromolecules ; 23(11): 4586-4596, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36103674

RESUMEN

We report the synthesis and characterization of an amphiphilic polymer comprising a hydrophobic palmitoyl (Pal) group and a zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) block, which is capable of forming micelles as a drug carrier system for delivering hydrophobic anticancer drugs such as doxorubicin (DOX). We hypothesize that the sharp polarity contrast between the Pal domain and the pMPC block would strengthen the micelles and improve the drug loading capacity, while the pMPC shells improve the micelle stability and cellular uptake efficiency. In this study, the Pal-pMPC polymer was characterized and compared with a Pal-poly(ethylene glycol) (Pal-PEG) polymer in terms of their micelle formation, cytotoxicity, and drug loading of DOX. The DOX-loaded Pal-pMPC micelles were further evaluated for the cellular uptake and anticancer activities in cell culture systems including the non-multidrug-resistance HeLa cell line and the multidrug-resistance AT3B-1 cell line. The results showed that the Pal-pMPC polymer had a minimal toxicity. The Pal-pMPC micelles exhibited higher drug loading capacity and enhanced cellular internalization efficiency compared to micelles formed by the Pal-PEG polymer. It was also found that DOX-loaded Pal-pMPC micelles exhibited a more efficient anticancer effect than Pal-PEG micelles in multidrug-resistance cancer cells in an environment with fetal bovine serum.


Asunto(s)
Antineoplásicos , Micelas , Humanos , Fosforilcolina/química , Polímeros/química , Células HeLa , Doxorrubicina/farmacología , Doxorrubicina/química , Polietilenglicoles/química , Antineoplásicos/farmacología , Antineoplásicos/química , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos
6.
Biomacromolecules ; 23(8): 3477-3492, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35878156

RESUMEN

Nanoparticle-hydrogel systems have recently emerged as a class of interesting hybrid materials with immense potential for several biomedical applications. Remarkably, the incorporation of nanoparticles into a hydrogel may yield synergistic benefits lacking in a singular system. However, most synthetic strategies require laborious steps to achieve the system, severely restricting the process of translational research. Herein, a facile strategy to access a two-in-one system comprising two distinct polyurethane (PU)-based micellar systems is demonstrated and applied as a novel sustained gene delivery platform, where the two PUs are synthesized similarly but with slightly different compositions. One PU forms cationic micelles that complex with plasmid DNA (pDNA), which are loaded into a thermogel formed by another PU micellar system for the prolonged release of pDNA micelleplexes. Specifically, a thermogelling multiblock PU copolymer (denoted as EPH) was synthesized via the step-growth polymerization of poly(ethylene glycol), poly(propylene glycol), and poly(3-hydroxybutyrate). By further introducing a cationic extender, 3-(dimethylamino)-1,2-propanediol, into the reaction feed, a series of cationic PUs (denoted as EPHD) with varying compositions were obtained. The EPHDs formed positively charged micelles in aqueous solutions, efficiently condensed pDNA into nano-sized micelleplexes (<200 nm) at optimized w/w ratios, and mediated transient green fluorescence protein expression in HEK293T cells at 48 h post-transfection. On the other hand, aqueous EPH solution (4 wt %) was injectable at 4 °C and rapidly gelled upon heating to 37 °C to form a stable hydrogel depot. EPHD/pDNA micelleplexes were easily loaded into EPH by mixing the solutions at 4 °C, before heating to 37 °C, leading to the resultant hydrogel system. The in vitro release study revealed that while free pDNA loaded in the thermogel was completely released in 2 weeks, the release of EPHD/pDNA micelleplexes was prolonged to at least 28 days, suggesting substantial micelleplex-hydrogel interactions. Intact, bioactive, and noncytotoxic EPHD/pDNA micelleplexes in the release media were proved by gel retardation, in vitro gene transfection, and CCK-8 cytotoxicity assay results, respectively. Collectively, this work presents a simple approach to achieving and optimizing a novel two-in-one nanoparticle-hydrogel system for the prolonged delivery of pDNA and may be promising for long-term gene delivery applications.


Asunto(s)
ADN , Micelas , Cationes , ADN/química , ADN/genética , Células HEK293 , Humanos , Hidrogeles , Plásmidos , Supuración
7.
Acta Biochim Biophys Sin (Shanghai) ; 53(6): 663-672, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33787845

RESUMEN

Neuritin is a member of the neurotrophic factor family, which plays an important role in the promotion and development of the nervous system. Neuritin is also involved in angiogenesis. Neuritin was recently found to be a negative regulatory factor of the Notch 1 signaling pathway. Notch signaling pathway is known as a regulatory pathway of angiogenesis. Thus, neuritin may play a role in angiogenesis through the Notch signaling pathway. In the present study, we investigated the expressions of neuritin and Notch signaling pathway factors in the pulmonary vascular tissue. The results showed that neuritin expression was increased in the paraneoplastic vascular tissue and decreased in the lung cancer vascular tissue. The neuritin expression was increased with the increase of vascular tissue density, and a negative correlation between neuritin expression and delta-like ligand 4 (DLL4) was identified in vascular tissues of lung cancer. Overexpression of neuritin in human umbilical vein endothelial cells (HUVECs) inhibited the expressions of Notch signaling pathway-associated factors, including DLL4, NICD, and Hes-1, and promoted the migration and tubular formation of HUVECs. In conclusion, our results indicated that neuritin is involved in angiogenesis and may play a role in angiogenesis through the Notch signaling pathway. This study provides a theoretical basis for clinical anti-angiogenesis therapy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma del Pulmón/metabolismo , Proteínas de Unión al Calcio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neoplasias Pulmonares/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/genética , Neuropéptidos/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal/genética , Adenocarcinoma del Pulmón/irrigación sanguínea , Adenocarcinoma del Pulmón/patología , Movimiento Celular/genética , Proliferación Celular/genética , Células Cultivadas , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Pulmón/irrigación sanguínea , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/patología , Neuropéptidos/genética , Transfección , Regulación hacia Arriba/genética
8.
Molecules ; 26(16)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34443616

RESUMEN

Water pollution by various toxic substances remains a serious environmental problem, especially the occurrence of organic micropollutants including endocrine disruptors, pharmaceutical pollutants and naphthol pollutants. Adsorption process has been an effective method for pollutant removal in wastewater treatment. However, the thermal regeneration process for the most widely used activated carbon is costly and energy-consuming. Therefore, there has been an increasing need to develop alternative low-cost and effective adsorption materials for pollutant removal. Herein, ß-cyclodextrin (ß-CD), a cheap and versatile material, was modified with methacrylate groups by reacting with methacryloyl chloride, giving an average degree of substitution of 3 per ß-CD molecule. ß-CD-methacrylate, which could function as a crosslinker, was then copolymerized with acrylamide monomer via free-radical copolymerization to form ß-CD-polyacrylamide (ß-CD-PAAm) hydrogel. Interestingly, in the structure of the ß-CD-PAAm hydrogel, ß-CD is not only a functional unit binding pollutant molecules through inclusion complexation, but also a structural unit crosslinking PAAm leading to the formation of the hydrogel 3D networks. Morphological studies showed that ß-CD-PAAm gel had larger pore size than the control PAAm gel, which was synthesized using conventional crosslinker instead of ß-CD-methacrylate. This was consistent with the higher swelling ratio of ß-CD-PAAm gel than that of PAAm gel (29.4 vs. 12.7). In the kinetic adsorption studies, phenolphthalein, a model dye, and bisphenol A, propranolol hydrochloride, and 2-naphthol were used as model pollutants from different classes. The adsorption data for ß-CD-PAAm gel fitted well into the pseudo-second-order model. In addition, the thermodynamic studies revealed that ß-CD-PAAm gel was able to effectively adsorb the different dye and pollutants at various concentrations, while the control PAAm gel had very low adsorption, confirming that the pollutant removal was due to the inclusion complexation between ß-CD units and pollutant molecules. The adsorption isotherms of the different dye and pollutants by the ß-CD-PAAm gel fitted well into the Langmuir model. Furthermore, the ß-CD-PAAm gel could be easily recycled by soaking in methanol and reused without compromising its performance for five consecutive adsorption/desorption cycles. Therefore, the ß-CD-PAAm gel, which combines the advantage of an easy-to-handle hydrogel platform and the effectiveness of adsorption by ß-CD units, could be a promising pollutant removal system for wastewater treatment applications.

9.
Cytokine ; 135: 155242, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32799009

RESUMEN

Midkine (MK) is a low molecular-weight protein that was first identified as the product of a retinoic acid-responsive gene involved in embryonic development. Recent studies have indicated that MK levels are related to various diseases, including cardiovascular disease (CVD), renal disease and autoimmune disease. MK is a growth factor involved in multiple pathophysiological processes, such as inflammation, the repair of damaged tissues and cancer. The pathophysiological roles of MK are diverse. MK enhances the recruitment and migration of inflammatory cells upon inflammation directly and also through induction of chemokines, and contributes to tissue damage. In lung endothelial cells, oxidative stress increased the expression of MK, which induced angiotensin-converting enzyme (ACE) expression and the consequent conversion from Ang I to Ang II, leading to further oxidative stress. MK inhibited cholesterol efflux from macrophages by reducing ATP-binding cassette transporter A1 (ABCA1) expression, which is involved in lipid metabolism, suggesting that MK is an important positive factor involved in inflammation, oxidative stress and lipid metabolism. Furthermore, MK can regulate the expansion, differentiation and activation of T cells as well as B-cell survival; mediate angiogenic and antibacterial activity; and possess anti-apoptotic activity. In this paper, we summarize the pathophysiological roles of MK in human disease.


Asunto(s)
Midkina/metabolismo , Animales , Apoptosis/fisiología , Enfermedad , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo
10.
Biomacromolecules ; 21(3): 1136-1148, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-31944668

RESUMEN

A tumor-targeted surface charge switchable polymeric gene delivery system with the function of switching surface charge upon reaching the tumor site owing to the tumor extracellular pH (pHe) was developed. The delivery system was fabricated by two steps. First, the positively charged polyplexe nanoparticles were formed between ß-cyclodextrin-oligoethylenimine star polymer (CD-OEI) and plasmid DNA (pDNA). Next, the CD-OEI/pDNA polyplex nanoparticles were coated with a pHe-responsive anionic polymer via an electrostatic interaction to form ternary complexes. The pHe-responsive anionic polymer was block copolymers of poly(ethylene glycol) (PEG) and poly(2-aminoethyl methacrylate) (pAEMA) modified with 2,3-dimethylmaleic anhydride (denoted as PPD). The coating polymer was mixed with a small amount of pHe-insensitive PEG-pAEMA modified with succinic anhydride (denoted as PPS), giving a balanced negatively charged and PEG-shielded surface with a pHe-responsive property for achieving the expected tumor-triggered enhanced gene delivery. At physiological pH 7.4, owing to the charge shielding of anionic surface coating and the PEGylation, the negatively charged CD-OEI/pDNA/PPD+PPS polyplex complexes could avoid the undesirable interaction with serum proteins and nontargeted components. However, the amide bond of PPD was sensitive to pH changes and could be easily hydrolyzed under acidic pHe (<6.8) to expose the primary amine group due to nucleophile catalysis by the carboxylic acid. The PEG block in the copolymers was used to further enhance the surface-shielding effect. Our data showed that excellent particle salt stability and serum tolerance were achieved through the PPD+PPS surface coating. The CD-OEI/pDNA/PPD+PPS complexes achieved lower cellular uptake and transfection efficiency at neutral pH 7.4 while exhibiting comparable cellular uptake and transfection efficiency at acidic pH 6.5 as compared to the uncoated polyplexes, indicating that the surface charge switching worked well.


Asunto(s)
Nanopartículas , Neoplasias , ADN , Técnicas de Transferencia de Gen , Humanos , Concentración de Iones de Hidrógeno , Metacrilatos , Polietilenglicoles , Polímeros , Transfección
11.
Biomacromolecules ; 21(4): 1516-1527, 2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32159339

RESUMEN

Supramolecular hydrogels based on inclusion complexation between cyclodextrins (CDs) and polymers have attracted much interest because of their potential for biomedical applications. It is also attractive to incorporate stimuli-responsive properties into the system to create "smart" hydrogels. Herein, a poly(N-isopropylacrylamide) (PNIPAAm) star polymer with a ß-CD core and an adamantyl-terminated poly(ethylene glycol) (Ad-PEG) polymer were synthesized. They self-assembled into a thermoresponsive pseudo-block copolymer through host-guest complexation and formed supramolecular micelles with the change in environment temperature. Subsequently, an injectable polypseudorotaxane-based supramolecular hydrogel was formed between α-CD and the PEG chains of the pseudo-block copolymer. The hydrogel had a unique network structure involving two types of supramolecular self-assemblies between cyclodextrins and polymers, that is, the host-guest complexation between ß-CD units and adamantyl groups and the polypseudorotaxane formation between α-CD and PEG chains. We hypothesize that the dual supramolecular hydrogel formed at room temperature may be enhanced by increasing the temperature over the lower critical solution temperature of PNIPAAm because of the hydrophobic interactions of PNIPAAm segments. Furthermore, if the hydrogel is applied for sustained delivery of hydrophobic drugs, the copolymer dissolved from the hydrogel could micellize and continue to serve as micellar drug carriers with the drug encapsulated in the hydrophobic core. Rheological tests revealed that the hydrophobic interactions of the PNIPAAm segments could significantly enhance the strength of the hydrogel when the temperature increased from 25 to 37 °C. As compared to hydrogels formed by α-CD and PEG alone, the sustained release property of this thermoresponsive hydrogel for an anticancer drug, doxorubicin (DOX), improved at 37 °C. The hydrogel dissolved slowly and released the pseudo-block copolymer in the form of micelles that continued to serve as drug carriers with DOX encapsulated in the hydrophobic core, achieving a better cellular uptake and anticancer effect than free DOX controls, even in multidrug-resistant cancer cells. According to these findings, the dual supramolecular hydrogel developed in this work with remarkable thermoresponsive properties might have potential for sustained anticancer drug delivery with enhanced therapeutic effect in multidrug-resistant cancer cells.


Asunto(s)
Antineoplásicos , Hidrogeles , Preparaciones de Acción Retardada , Sistemas de Liberación de Medicamentos , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Polietilenglicoles
12.
Prep Biochem Biotechnol ; 49(3): 209-214, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30822252

RESUMEN

OBJECTIVE: To date, a commercial antibody to human Neuritin for immunoprecipitation is still limited. In this study, we aimed to develop a specific antibody for further research on the potential function of Neuritin. METHODS AND RESULTS: By epitope prediction of recombinant human Neuritin, the active fragment of human Neuritin that could be used as an excellent immunogen. Soluble His-tagged Neuritin was expressed and purified from Pichia pastoris. Polyclonal antibody against Neuritin was obtained by immunizing Sprague-Dawley rats with purified recombinant human Neuritin. Affinity-purified polyclonal antibody against Neuritin was characterized with indirect enzyme-linked immunosorbent assay, immunoblotting, immunoprecipitation, and immunofluorescence. The results demonstrated that the polyclonal antibody against Neuritin had been prepared successfully. The prepared antibody bound to both exogenous and endogenous Neuritin. Importantly, the anti-Neuritin polyclonal antibody could be used in immunoprecipitation assays. CONCLUSIONS: The prepared polyclonal antibody could be used in immunoprecipitation and provide researchers with a useful tool for further investigating the function and mechanism of Neuritin.


Asunto(s)
Anticuerpos/inmunología , Neuropéptidos/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos/aislamiento & purificación , Línea Celular Tumoral , Epítopos , Técnica del Anticuerpo Fluorescente , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/aislamiento & purificación , Humanos , Immunoblotting , Inmunoprecipitación , Masculino , Neuropéptidos/química , Neuropéptidos/aislamiento & purificación , Pichia , Ratas Sprague-Dawley , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación
13.
Biotechnol Lett ; 39(11): 1649-1655, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28852892

RESUMEN

OBJECTIVE: To study the effects of recombinant neuritin expressed by Pichia pastoris GS115 on the senescence, apoptosis, proliferation, and migration associated with rat bone marrow-derived mesenchymal stem cells (BMSCs). RESULTS: Recombinant neuritin was purified by Ni-affinity chromatography and identified by western blot and MALDI-TOF spectrometry. The effects of recombinant neuritin on senescence, apoptosis, proliferation, and migration of rat BMSCs WERE investigated. ß-Galactosidase staining indicated that recombinant neuritin administration significantly inhibited BMSCs senescence at 1 µg neuritin/ml. Additionally, recombinant neuritin reduced the number of apoptotic cells at the early stage according to Annexin V/propidium iodide staining and inhibited cell proliferation according to MTT assay results. Moreover wound healing assay results showed that recombinant neuritin promoted BMSCs migration in the neuritin-treatment group. CONCLUSION: Recombinant neuritin affects the senescence, apoptosis, proliferation, migration of rat BMSCs. Our findings offer insight into neuritin function outside of the nervous system.


Asunto(s)
Células Madre Mesenquimatosas/citología , Neuropéptidos/genética , Proteínas Recombinantes/farmacología , Animales , Apoptosis , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Neuropéptidos/farmacología , Ratas
14.
Biomacromolecules ; 17(12): 3957-3963, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27776208

RESUMEN

Paclitaxel (PTX), a hydrophobic anticancer drug, is facing several clinical limitations such as low bioavailability and drug resistance. To solve the problems, a well-defined ß-cyclodextrin-poly(N-isopropylacrylamide) star polymer was synthesized and used as a nanocarrier to improve the water solubility and aim to thermoresponsive delivery of PTX to cancer cells. The star polymer was able to form supramolecular self-assembled inclusion complex with PTX via host-guest interaction at room temperature, which is below the low critical solution temperature (LCST) of the star polymer, significantly improving the solubilization of PTX. At body temperature (above LCST), the phase transition of poly(N-isopropylacrylamide) segments induced the formation of nanoparticles, which greatly enhanced the cellular uptake of the polymer-drug complex, resulting in efficient thermoresponsive delivery of PTX. In particular, the polymer-drug complex exhibited better antitumor effects than the commercial formulation of PTX in overcoming the multi-drug resistance in AT3B-1 cells.


Asunto(s)
Acrilamidas/química , Sistemas de Liberación de Medicamentos , Nanopartículas/administración & dosificación , Paclitaxel/farmacología , Polímeros/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , beta-Ciclodextrinas/química , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacología , Supervivencia Celular/efectos de los fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Cuerpos de Inclusión , Masculino , Nanopartículas/química , Paclitaxel/administración & dosificación , Polímeros/química , Ratas , Temperatura , Células Tumorales Cultivadas
15.
Appl Microbiol Biotechnol ; 99(19): 8035-43, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26048470

RESUMEN

Neuritin (also known as candidate plasticity gene 15 (cpg15)) is a neurotrophic factor that was recently discovered in a screen aimed at identifying genes involved in activity-dependent synaptic plasticity. Neuritin plays multiple roles in both neural development (Chen et al. Zhonghua Yan Ke Za Zhi 46:978-983 2010; Corriveau et al. J Neurosci 19:7999-8008 1999; Lee and Nedivi J Neurosci 22:1807-1815 2002) and synaptic plasticity (Fujino et al. Gene Dev 25:2674-2685 2011; Leslie and Nedivi Prog 14 Neurobiol 94:223-237 2011; Loebrich and Nedivi Physiol Rev 89:1079 2009). In this study, to produce bioactive, soluble recombinant human neuritin protein, a portion of NRN1 was cloned into the Pichia pastoris expression vector pPIC9K. The recombinant vector was then transformed into the methylotrophic yeast strain P. pastoris GS115, and a shaking flask method and His-tag purification strategy were utilized to express and purify neuritin protein. The resulting protein had a molecular mass of approximately 11 kDa, and subsequent functional analyses indicated that the purified neuritin promoted neurite outgrowth from embryonic chicken dorsal root ganglions, while also prolonging the survival of these ganglions, and from PC12 cells. These findings suggest that neuritin was expressed effectively in vitro and that this protein may play a role in stimulating neurite outgrowth of both dorsal root ganglions and PC12 cells. This study provides a novel strategy for the large-scale production of bioactive neuritin, which will enable further study of the biological function of this protein.


Asunto(s)
Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/aislamiento & purificación , Neuropéptidos/genética , Neuropéptidos/aislamiento & purificación , Pichia/genética , Animales , Células Cultivadas , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/aislamiento & purificación , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/farmacología , Expresión Génica , Humanos , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Pichia/metabolismo , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología
16.
Carbohydr Polym ; 339: 122253, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823920

RESUMEN

In vitro tumor models are essential for understanding tumor behavior and evaluating tumor biological properties. Hydrogels that can mimic the tumor extracellular matrix have become popular for creating 3D in vitro tumor models. However, designing biocompatible hydrogels with appropriate chemical and physical properties for constructing tumor models is still a challenge. In this study, we synthesized a series of ß-cyclodextrin (ß-CD)-crosslinked polyacrylamide hydrogels with different ß-CD densities and mechanical properties and evaluated their potential for use in 3D in vitro tumor model construction, including cell capture and spheroid formation. By utilizing a combination of ß-CD-methacrylate (CD-MA) and a small amount of N,N'-methylene bisacrylamide (BIS) as hydrogel crosslinkers and optimizing the CD-MA/BIS ratio, the hydrogels performed excellently for tumor cell 3D culture and spheroid formation. Notably, when we co-cultured L929 fibroblasts with HeLa tumor cells on the hydrogel surface, co-cultured spheroids were formed, showing that the hydrogel can mimic the complexity of the tumor extracellular matrix. This comprehensive investigation of the relationship between hydrogel mechanical properties and biocompatibility provides important insights for hydrogel-based in vitro tumor modeling and advances our understanding of the mechanisms underlying tumor growth and progression.


Asunto(s)
Resinas Acrílicas , Hidrogeles , Esferoides Celulares , beta-Ciclodextrinas , Esferoides Celulares/efectos de los fármacos , Humanos , Resinas Acrílicas/química , Resinas Acrílicas/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/síntesis química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacología , Células HeLa , Animales , Ratones , Reactivos de Enlaces Cruzados/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Técnicas de Cultivo Tridimensional de Células/métodos , Metacrilatos/química , Técnicas de Cocultivo , Neoplasias/patología
17.
J Colloid Interface Sci ; 667: 259-268, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38636227

RESUMEN

Indocyanine green (ICG) is an FDA-approved medical diagnostic agent that is widely used as a near-infrared (NIR) fluorescent imaging molecular probe. However, ICG tends to aggregate to form dimers or H-aggregates in water and lacks physical and optical stability, which greatly decreases its absorbance and fluorescence intensity in various applications. Additionally, ICG has no tissue- or tumor-targeting properties, and its structure is not easy to modify, which has further limited its application in cancer diagnosis. In this study, we addressed these challenges by developing a supramolecular colloidal carrier system that targets tumor cells. To this end, we synthesized a water-soluble ß-cyclodextrin (ß-CD) polymer conjugated with folate (FA), denoted PCD-FA, which is capable of forming inclusion complexes with ICG in water through host-guest interactions between the ß-CD moieties and ICG molecules. The inclusion complexes formed by PCD-FA and ICG, called ICG@PCD-FA, dispersed stably in solution as colloidal nanoparticles, greatly improving the physical and optical properties of ICG by preventing ICG dimer formation, where ICG appeared as monomers and even J-aggregates. This resulted in stronger and more stable absorption at a longer wavelength of 900 nm, which may allow for deeper tissue penetration and imaging with reduced interference from biological tissues' autofluorescence. Moreover, ICG@PCD-FA showed a targeting effect on folate receptor-positive (FR+) tumor cells, which specifically highlighted FR+ cells via NIR endoscopic imaging. Notably, ICG@PCD-FA further improved permeation and accumulation in FR+ 3D tumor spheroids. Therefore, this ICG@PCD-FA supramolecular colloidal system may have a great potential for use in tumor NIR imaging and diagnostic applications.


Asunto(s)
Coloides , Ácido Fólico , Verde de Indocianina , Esferoides Celulares , beta-Ciclodextrinas , Verde de Indocianina/química , beta-Ciclodextrinas/química , Ácido Fólico/química , Humanos , Coloides/química , Imagen Óptica , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Tamaño de la Partícula , Células Tumorales Cultivadas , Polímeros/química , Nanopartículas/química
18.
Front Neurol ; 15: 1351458, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803642

RESUMEN

Background: Ventilator-Associated Pneumonia (VAP) severely impacts stroke patients' prognosis after endovascular treatment. Hence, this study created a nomogram to predict the occurrence of VAP after endovascular treatment. Methods: The individuals with acute ischemic stroke and large vessel occlusion (AIS-LVO) who received mechanical ventilation and endovascular therapy between July 2020 and August 2023 were included in this retrospective study. The predictive model and nomogram were generated by performing feature selection optimization using the LASSO regression model and multifactor logistic regression analysis and assessed the evaluation, verification and clinical application. Results: A total of 184 individuals (average age 61.85 ± 13.25 years, 73.37% male) were enrolled, and the rate of VAP occurrence was found to be 57.07%. Factors such as the Glasgow Coma Scale (GCS) score, duration of stay in the Intensive Care Unit (ICU), dysphagia, Fazekas scale 2 and admission diastolic blood pressure were found to be associated with the occurrence of VAP in the nomogram that demonstrating a strong discriminatory power with AUC of 0.862 (95% CI, 0.810-0.914), and a favorable clinical net benefit. Conclusion: This nomogram, comprising GCS score, ICU duration, dysphagia, Fazekas scale 2 and admission diastolic blood pressure, can aid clinicians in predicting the identification of high-risk patients for VAP following endovascular treatment in large vessel occlusion stroke.

19.
Carbohydr Polym ; 319: 121170, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567711

RESUMEN

A series of hydrogels were synthesized from renewable and low-cost micro-sized cellulose fiber. The single-network hydrogel was composed of cellulose fiber and a small amount of another polysaccharide, chitosan, which 'glued' individual cellulose fiber pieces together through Schiff-base bonding. The double-network hydrogel was constructed by adding a secondary network, the covalently crosslinked polyacrylamide, into the single-network hydrogel, which was synthesized by conducting Schiff-base reaction and free radical polymerization at the same time in a facile one-pot process. In both single- and double-network hydrogels, cellulose fiber constituted the dominant component. Both types of hydrogels exhibited good swelling properties. The double-network hydrogel showed much improved stability against soaking in water and higher salt tolerance. Germination experiment with choy sum seeds sowed on hydrogel surface showed that the seeds were able to germinate and further develop roots, shoots, and true leaves, demonstrating the potential of the biomass-derived hydrogels for soilless plant growing applications.


Asunto(s)
Quitosano , Quitosano/química , Hidrogeles/química , Celulosa/química , Biomasa , Semillas
20.
Carbohydr Polym ; 320: 121207, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659810

RESUMEN

Tumor proliferation and metastasis rely on energy provided by mitochondria. The hexokinase inhibitor lonidamine (LND) could suppress the activities in mitochondria, being a potential antitumor drug. However, limited water-solubility of LND may hinder its biomedical applications. Besides, the cancer-killing effect of LND is compromised by the high level of glutathione (GSH) in cancer cells. Therefore, it is urgent to find a proper method to simultaneously deliver LND and deplete GSH as well as monitor GSH level in cancer cells. Herein, a host polymer ß-cyclodextrin-polyethylenimine (ß-CD-PEI) and a guest polymer dextran-5-dithio-(2-nitrobenzoic acid) (Dextran-SS-TNB) were synthesized and allowed to form LND-loaded GSH-responsive nanoparticles through host-guest inclusion complexation between ß-CD and TNB as host and guest molecular moieties, respectively, which functioned as a system for simultaneous delivery of LND and -SS-TNB species into cancer cells. As a result, the delivery system could deplete GSH and elevate reactive oxygen species (ROS) level in cancer cells, further induce LND-based mitochondrial dysfunction and ROS-based immunogenic cell death (ICD), leading to a synergistic and efficient anticancer effect. In addition, -SS-TNB reacted with GSH to release TNB2-, which could be a probe with visible light absorption at 410 nm for monitoring the GSH level in the cells.


Asunto(s)
Antineoplásicos , Nanopartículas Multifuncionales , Dextranos , Especies Reactivas de Oxígeno , Antineoplásicos/farmacología , Glutatión , Polímeros , Sistemas de Liberación de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA