Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 632(8024): 383-389, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048823

RESUMEN

The brain is highly sensitive to damage caused by infection and inflammation1,2. Herpes simplex virus 1 (HSV-1) is a neurotropic virus and the cause of herpes simplex encephalitis3. It is unknown whether neuron-specific antiviral factors control virus replication to prevent infection and excessive inflammatory responses, hence protecting the brain. Here we identify TMEFF1 as an HSV-1 restriction factor using genome-wide CRISPR screening. TMEFF1 is expressed specifically in neurons of the central nervous system and is not regulated by type I interferon, the best-known innate antiviral system controlling virus infections. Depletion of TMEFF1 in stem-cell-derived human neurons led to elevated viral replication and neuronal death following HSV-1 infection. TMEFF1 blocked the HSV-1 replication cycle at the level of viral entry through interactions with nectin-1 and non-muscle myosin heavy chains IIA and IIB, which are core proteins in virus-cell binding and virus-cell fusion, respectively4-6. Notably, Tmeff1-/- mice exhibited increased susceptibility to HSV-1 infection in the brain but not in the periphery. Within the brain, elevated viral load was observed specifically in neurons. Our study identifies TMEFF1 as a neuron-specific restriction factor essential for prevention of HSV-1 replication in the central nervous system.


Asunto(s)
Factores de Restricción Antivirales , Encéfalo , Herpes Simple , Herpesvirus Humano 1 , Proteínas de la Membrana , Neuronas , Internalización del Virus , Replicación Viral , Animales , Femenino , Humanos , Masculino , Ratones , Factores de Restricción Antivirales/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/virología , Muerte Celular , Sistemas CRISPR-Cas/genética , Herpes Simple/inmunología , Herpes Simple/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/crecimiento & desarrollo , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Neuronas/virología , Neuronas/metabolismo , Carga Viral , Nectinas/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Interferón Tipo I , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/prevención & control , Enfermedades Neuroinflamatorias/virología
2.
Mol Cell ; 79(5): 782-796.e6, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32780989

RESUMEN

Enzymes or enzyme complexes can be concentrated in different cellular loci to modulate distinct functional processes in response to specific signals. How cells condense and compartmentalize enzyme complexes for spatiotemporally distinct cellular events is not well understood. Here we discover that specific and tight association of GIT1 and ß-Pix, a pair of GTPase regulatory enzymes, leads to phase separation of the complex without additional scaffolding molecules. GIT1/ß-Pix condensates are modular in nature and can be positioned at distinct cellular compartments, such as neuronal synapses, focal adhesions, and cell-cell junctions, by upstream adaptors. Guided by the structure of the GIT/PIX complex, we specifically probed the role of phase separation of the enzyme complex in cell migration and synapse formation. Our study suggests that formation of modular enzyme complex condensates via phase separation can dynamically concentrate limited quantities of enzymes to distinct cellular compartments for specific and optimal signaling.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Animales , Proteínas de Ciclo Celular/química , Proteínas Activadoras de GTPasa/química , Células HEK293 , Células HeLa , Humanos , Ratones , Modelos Moleculares , Paxillin/metabolismo , Unión Proteica , Proteínas Recombinantes/metabolismo
3.
Mol Cell Biochem ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564125

RESUMEN

Osteosarcoma (OS) is a malignant bone sarcoma arising from mesenchymal stem cells. The biological role of Acyl-CoA synthetase long-chain family member 4 (ACSL4), recently identified as an oncogene in numerous tumor types, remains largely unclear in OS. In this study, we investigated the expression of ACSL4 in OS tissues using immunohistochemistry staining (IHC) staining of a human tissue microarray and in OS cells by qPCR assay. Our findings revealed a significant up-regulation of ACSL4 in both OS tissues and cells. To further understand its biological effects, we conducted a series of loss-of-function experiments using ACSL4-depleted MNNG/HOS and U-2OS cell lines, focusing on OS cell proliferation, migration, and apoptosis in vitro. Our results demonstrated that ACSL4 knockdown remarkably suppressed OS cell proliferation, arrested cells in the G2 phase, induced cell apoptosis, and inhibited cell migration. Additionally, a subcutaneous xenograft mice model was established to validate the in vivo impact of ACSL4, revealing ACSL4 silencing impaired tumor growth in the OS xenograft mice. Additionally, we discovered that ACSL4 could regulate the phosphorylation level of Smad2 through cooperative interactions, and treatment with a TGF-ß inhibitor weakened the promoting effects of ACSL4 overexpression. In short, ACSL4 regulated OS progression by modulating TGF-ß/Smad2 signaling pathway. These findings underscore ACSL4 as a promising therapeutic target for OS patients and contribute novel insights into the pathogenesis of OS.

4.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33597305

RESUMEN

Ephexin family guanine nucleotide exchange factors (GEFs) transfer signals from Eph tyrosine kinase receptors to Rho GTPases, which play critical roles in diverse cellular processes, as well as cancers and brain disorders. Here, we elucidate the molecular basis underlying inhibition and activation of Ephexin family RhoGEFs. The crystal structures of partially and fully autoinhibited Ephexin4 reveal that the complete autoinhibition requires both N- and C-terminal inhibitory modes, which can operate independently to impede Ras homolog family member G (RhoG) access. This double inhibition mechanism is commonly employed by other Ephexins and SGEF, another RhoGEF for RhoG. Structural, enzymatic, and cell biological analyses show that phosphorylation of a conserved tyrosine residue in its N-terminal inhibitory domain and association of PDZ proteins with its C-terminal PDZ-binding motif may respectively relieve the two autoinhibitory modes in Ephexin4. Our study provides a mechanistic framework for understanding the fine-tuning regulation of Ephexin4 GEF activity and offers possible clues for its pathological dysfunction.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mutación , Dominios PDZ , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Fosforilación , Conformación Proteica
5.
Sensors (Basel) ; 24(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39000841

RESUMEN

As large-scale, high-proportion, and efficient distribution transformers surge into the grids, anti-short circuit capability testing of transformer windings in efficient distribution seems necessary and prominent. To deeply explore the influence of progressively short-circuit shock impulses on the core winding deformation of efficient power transformers, a finite element theoretical model was built by referring to a three-phase three-winding 3D wound core transformer with a model of S20-MRL-400/10-NX2. The distributions of internal equivalent force and total deformation of the 3D wound core transformer along different paths under progressively short-circuit shock impulses varying from 60% to 120% were investigated. Results show that the equivalent stress and total deformation change rate reach their maximum as the short-circuit current increases from 60% to 80%, and the maximum and average variation rate for the equivalent stress reach 177.75% and 177.43%, while the maximum and average variation rate for the total deformation corresponds to 178.30% and 177.45%, respectively. Meanwhile, the maximum equivalent stress and maximum total deformation reach 29.81 MPa and 38.70 µm, respectively, as the applied short-circuit current increased to 120%. In light of the above observations, the optimization and deployment of wireless sensor nodes was suggested. Therefore, a distributed monitoring system was developed for acquiring the vibration status of the windings in a 3D wound core transformer, which is a beneficial supplement to the traditional short-circuit reactance detection methods for an efficient grid access spot-check of distribution transformers.

6.
Sensors (Basel) ; 23(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37430837

RESUMEN

Overhead transmission lines are important lifelines in power systems, and the research and application of their intelligent patrol technology is one of the key technologies for building smart grids. The main reason for the low detection performance of fittings is the wide range of some fittings' scale and large geometric changes. In this paper, we propose a fittings detection method based on multi-scale geometric transformation and attention-masking mechanism. Firstly, we design a multi-view geometric transformation enhancement strategy, which models geometric transformation as a combination of multiple homomorphic images to obtain image features from multiple views. Then, we introduce an efficient multiscale feature fusion method to improve the detection performance of the model for targets with different scales. Finally, we introduce an attention-masking mechanism to reduce the computational burden of model-learning multiscale features, thereby further improving model performance. In this paper, experiments have been conducted on different datasets, and the experimental results show that the proposed method greatly improves the detection accuracy of transmission line fittings.

7.
J Am Soc Nephrol ; 32(8): 1946-1960, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34330769

RESUMEN

BACKGROUND: Slit diaphragm is a specialized adhesion junction between the opposing podocytes, establishing the final filtration barrier to urinary protein loss. At the cytoplasmic insertion site of each slit diaphragm there is an electron-dense and protein-rich cellular compartment that is essential for slit diaphragm integrity and signal transduction. Mutations in genes that encode components of this membrane-less compartment have been associated with glomerular diseases. However, the molecular mechanism governing formation of compartmentalized slit diaphragm assembly remains elusive. METHODS: We systematically investigated the interactions between key components at slit diaphragm, such as MAGI2, Dendrin, and CD2AP, through a combination of biochemical, biophysical, and cell biologic approaches. RESULTS: We demonstrated that MAGI2, a unique MAGUK family scaffold protein at slit diaphragm, can autonomously undergo liquid-liquid phase separation. Multivalent interactions among the MAGI2-Dendrin-CD2AP complex drive the formation of the highly dense slit diaphragm condensates at physiologic conditions. The reconstituted slit diaphragm condensates can effectively recruit Nephrin. A nephrotic syndrome-associated mutation of MAGI2 interfered with formation of the slit diaphragm condensates, thus leading to impaired enrichment of Nephrin. CONCLUSIONS: Key components at slit diaphragm (e.g., MAGI2 and its complex) can spontaneously undergo phase separation. The reconstituted slit diaphragm condensates can be enriched in adhesion molecules and cytoskeletal adaptor proteins. Therefore, the electron-dense slit diaphragm assembly might form via phase separation of core components of the slit diaphragm in podocytes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Barrera de Filtración Glomerular/química , Guanilato-Quinasas/química , Proteínas de la Membrana/química , Podocitos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Fenómenos Biofísicos , Moléculas de Adhesión Celular/genética , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Barrera de Filtración Glomerular/metabolismo , Barrera de Filtración Glomerular/fisiología , Proteínas Fluorescentes Verdes , Guanilato-Quinasas/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Estructura Molecular , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Transición de Fase , Dominios y Motivos de Interacción de Proteínas
8.
Nat Rev Neurosci ; 17(4): 209-23, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26988743

RESUMEN

Membrane-associated guanylate kinases (MAGUKs) are a family of scaffold proteins that are highly enriched in synapses and are responsible for organizing the numerous protein complexes required for synaptic development and plasticity. Mutations in genes encoding MAGUKs and their interacting proteins can cause a broad spectrum of human psychiatric disorders. Here, we review MAGUK-mediated synaptic protein complex formation and regulation by focusing on findings from recent biochemical and structural investigations. These mechanistic-based studies show that the formation of MAGUK-organized complexes is often directly regulated by protein phosphorylation, suggesting a close connection between neuronal activity and the assembly of dynamic protein complexes in synapses.


Asunto(s)
Guanilato-Quinasas/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Transducción de Señal/fisiología , Sinapsis/metabolismo , Animales , Guanilato-Quinasas/química , Guanilato-Quinasas/genética , Humanos
9.
Biochem J ; 477(23): 4623-4634, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33216857

RESUMEN

Scaffold proteins play crucial roles in orchestrating synaptic signaling and plasticity in the excitatory synapses by providing a structural link between glutamatergic receptors, signaling molecules, and neuronal cytoskeletons. FRMPD4 is a neural scaffold protein that binds to metabotropic glutamate receptors via its FERM domain. Here, we determine the crystal structure of the FERM domain of FRMPD4 at 2.49 Šresolution. The structure reveals that the canonical target binding groove of FRMPD4 FERM is occupied by a conserved fragment C-terminal to the FERM domain, suggesting that the FRMPD4-mGluR interaction may adopt a distinct binding mode. In addition, FRMPD4 FERM does not contain a typical phosphoinositide binding site at the F1/F3 cleft found in ERM family FERM domains, but it possesses a conserved basic residue cluster on the F2 lobe which could bind to lipid effectively. Finally, analysis of mutations that are associated with X-linked intellectual disability suggests that they may compromise the biological function of FRMPD4 by destabilizing the FERM structure.


Asunto(s)
Genes Ligados a X , Discapacidad Intelectual , Péptidos y Proteínas de Señalización Intracelular/química , Mutación , Cristalografía por Rayos X , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Dominios Proteicos
10.
Ecotoxicol Environ Saf ; 217: 112217, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33862431

RESUMEN

Microplastics are widespread in freshwater environments, their biological effects and combined effects of other pollutants have attracted extensive attention. In this study, we investigated the adsorption properties of heavy metals onto polystyrene (PS) microplastics as well as the bioavailability and toxicity of microplastics and heavy metals by hydroponic wheat seedlings experiment. Results showed that PS microplastics (0.5 µm, 100 mg/L) had no significant effect on wheat seedlings growth, photosynthesis, and reactive oxygen species (ROS) content. However, PS microplastics could adsorb copper and cadmium, with a predominantly chemisorption. The accumulation of copper and cadmium in wheat seedlings reduced in the presence of PS microplastics, which meant the toxic effect by heavy metals might be mitigated. Compared with single heavy metals treatments, the combination of PS microplastics and heavy metals increased chlorophyll content, enhanced photosynthesis and reduced the accumulation of ROS. These findings suggest that PS microplastics (0.5 µm, 100 mg/L) have a mitigating effect on the bioavailability and toxicity of copper and cadmium.


Asunto(s)
Cadmio/toxicidad , Cobre/toxicidad , Microplásticos/toxicidad , Contaminantes del Suelo/toxicidad , Triticum/fisiología , Adsorción , Disponibilidad Biológica , Transporte Biológico , Clorofila , Hidroponía , Metales Pesados/toxicidad , Microplásticos/metabolismo , Fotosíntesis , Plásticos , Poliestirenos , Plantones/efectos de los fármacos , Plantones/fisiología , Contaminantes del Suelo/metabolismo
11.
Int J Mol Sci ; 22(11)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070938

RESUMEN

The excessive accumulation of lipids in hepatocytes induces a type of cytotoxicity called hepatic lipotoxicity, which is a fundamental contributor to liver metabolic diseases (such as NAFLD). Magnesium isoglycyrrhizinate (MGIG), a magnesium salt of the stereoisomer of natural glycyrrhizic acid, is widely used as a safe and effective liver protectant. However, the mechanism by which MGIG protects against NAFLD remains unknown. Based on the significant correlation between NAFLD and the reprogramming of liver metabolism, we aimed to explore the beneficial effects of MGIG from a metabolic viewpoint in this paper. We treated HepaRG cells with palmitic acid (PA, a saturated fatty acid of C16:0) to induce lipotoxicity and then evaluated the antagonistic effect of MGIG on lipotoxicity by investigating the cell survival rate, DNA proliferation rate, organelle damage, and endoplasmic reticulum stress (ERS). Metabolomics, lipidomics, and isotope tracing were used to investigate changes in the metabolite profile, lipid profile, and lipid flux in HepaRG cells under different intervention conditions. The results showed that MGIG can indeed protect hepatocytes against PA-induced cytotoxicity and ERS. In response to the metabolic abnormality of lipotoxicity, MGIG curtailed the metabolic activation of lipids induced by PA. The content of total lipids and saturated lipids containing C16:0 chains increased significantly after PA stimulation and then decreased significantly or even returned to normal levels after MGIG intervention. Lipidomic data show that glycerides and glycerophospholipids were the two most affected lipids. For excessive lipid accumulation in hepatocytes, MGIG can downregulate the expression of the metabolic enzymes (GPATs and DAGTs) involved in triglyceride biosynthesis. In conclusion, MGIG has a positive regulatory effect on the metabolic disorders that occur in hepatocytes under lipotoxicity, and the main mechanisms of this effect are in lipid metabolism, including reducing the total lipid content, reducing lipid saturation, inhibiting glyceride and glycerophospholipid metabolism, and downregulating the expression of metabolic enzymes in lipid synthesis.


Asunto(s)
Hepatocitos/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metaboloma/efectos de los fármacos , Ácido Palmítico/antagonistas & inhibidores , Sustancias Protectoras/farmacología , Saponinas/farmacología , Triterpenos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica , Glicéridos/clasificación , Glicéridos/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/antagonistas & inhibidores , Glicerol-3-Fosfato O-Aciltransferasa/genética , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Glicerofosfolípidos/clasificación , Glicerofosfolípidos/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Metabolismo de los Lípidos/genética , Lipidómica , Ácido Palmítico/toxicidad
12.
J Biol Chem ; 293(1): 215-225, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29158259

RESUMEN

The cross-talk between dynamic microtubules and the cell cortex plays important roles in cell division, polarity, and migration. A critical adaptor that links the plus ends of microtubules with the cell cortex is the KANK N-terminal motif and ankyrin repeat domains 1 (KANK1)/kinesin family member 21A (KIF21A) complex. Genetic defects in these two proteins are associated with various cancers and developmental diseases, such as congenital fibrosis of the extraocular muscles type 1. However, the molecular mechanism governing the KANK1/KIF21A interaction and the role of the conserved ankyrin (ANK) repeats in this interaction are still unclear. In this study, we present the crystal structure of the KANK1·KIF21A complex at 2.1 Å resolution. The structure, together with biochemical studies, revealed that a five-helix-bundle-capping domain immediately preceding the ANK repeats of KANK1 forms a structural and functional supramodule with its ANK repeats in binding to an evolutionarily conserved peptide located in the middle of KIF21A. We also show that several missense mutations present in cancer patients are located at the interface of the KANK1·KIF21A complex and destabilize its formation. In conclusion, our study elucidates the molecular basis underlying the KANK1/KIF21A interaction and also provides possible mechanistic explanations for the diseases caused by mutations in KANK1 and KIF21A.


Asunto(s)
Proteínas Portadoras/metabolismo , Cinesinas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Repetición de Anquirina , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cristalografía por Rayos X , Proteínas del Citoesqueleto , Humanos , Cinesinas/química , Cinesinas/genética , Ratones , Microtúbulos/metabolismo , Complejos Multiproteicos , Mutación Missense , Conformación Proteica en Hélice alfa , Relación Estructura-Actividad , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética
13.
Development ; 143(14): 2573-81, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27287805

RESUMEN

In animal cells, mitotic spindles are oriented by the dynein/dynactin motor complex, which exerts a pulling force on astral microtubules. Dynein/dynactin localization depends on Mud/NUMA, which is typically recruited to the cortex by Pins/LGN. In Drosophila neuroblasts, the Inscuteable/Baz/Par-6/aPKC complex recruits Pins apically to induce vertical spindle orientation, whereas in epithelial cells Dlg recruits Pins laterally to orient the spindle horizontally. Here we investigate division orientation in the Drosophila imaginal wing disc epithelium. Live imaging reveals that spindle angles vary widely during prometaphase and metaphase, and therefore do not reliably predict division orientation. This finding prompted us to re-examine mutants that have been reported to disrupt division orientation in this tissue. Loss of Mud misorients divisions, but Inscuteable expression and aPKC, dlg and pins mutants have no effect. Furthermore, Mud localizes to the apical-lateral cortex of the wing epithelium independently of both Pins and cell cycle stage. Thus, Pins is not required in the wing disc because there are parallel mechanisms for Mud localization and hence spindle orientation, making it a more robust system than in other epithelia.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Discos Imaginales/metabolismo , Huso Acromático/metabolismo , Alas de Animales/metabolismo , Animales , Proteínas de Ciclo Celular , División Celular , Proteínas del Citoesqueleto/metabolismo , Drosophila melanogaster/citología , Discos Imaginales/citología , Mutación/genética , Transducción de Señal , Alas de Animales/citología
14.
Mol Cell ; 43(3): 418-31, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21816348

RESUMEN

Asymmetric cell division requires the establishment of cortical cell polarity and the orientation of the mitotic spindle along the axis of cell polarity. Evidence from invertebrates demonstrates that the Par3/Par6/aPKC and NuMA/LGN/Gαi complexes, which are thought to be physically linked by the adaptor protein mInscuteable (mInsc), play indispensable roles in this process. However, the molecular basis for the binding of LGN to NuMA and mInsc is poorly understood. The high-resolution structures of the LGN/NuMA and LGN/mInsc complexes presented here provide mechanistic insights into the distinct and highly specific interactions of the LGN TPRs with mInsc and NuMA. Structural comparisons, together with biochemical and cell biology studies, demonstrate that the interactions of NuMA and mInsc with LGN are mutually exclusive, with mInsc binding preferentially. Our results suggest that the Par3/mInsc/LGN and NuMA/LGN/Gαi complexes play sequential and partially overlapping roles in asymmetric cell division.


Asunto(s)
Antígenos Nucleares/química , Proteínas Portadoras/química , Proteínas de Ciclo Celular/química , División Celular/fisiología , Proteínas Asociadas a Matriz Nuclear/química , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígenos Nucleares/genética , Antígenos Nucleares/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Polaridad Celular , Cristalografía por Rayos X , Escherichia coli/genética , Subunidad alfa de la Proteína de Unión al GTP Gi2/química , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/fisiología , Humanos , Ratones , Modelos Moleculares , Mutagénesis , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/fisiología , Estructura Terciaria de Proteína , Transporte de Proteínas , Huso Acromático/metabolismo
15.
J Am Soc Nephrol ; 29(9): 2362-2371, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30006415

RESUMEN

BACKGROUND: The slit diaphragm is a specialized adhesion junction between opposing podocytes, establishing the final filtration barrier that prevents passage of proteins from the capillary lumen into the urinary space. Nephrin, the key structural and signaling adhesion molecule expressed in the slit diaphragm, contains an evolutionally conserved, atypical PDZ-binding motif (PBM) reported to bind to a variety of proteins in the slit diaphragm. Several mutations in NPHS1 (the gene encoding nephrin) that result in nephrin lacking an intact PBM are associated with glomerular diseases. However, the molecular basis of nephrin-PBM-mediated protein complexes is still unclear. METHODS: Using a combination of biochemic, biophysic, and cell biologic approaches, we systematically investigated the interactions between nephrin-PBM and PDZ domain-containing proteins in the slit diaphragm. RESULTS: We found that nephrin-PBM specifically binds to one member of the membrane-associated guanylate kinase family of scaffolding proteins, MAGI1, but not to another, MAGI2. The complex structure of MAGI1-PDZ3/nephrin-PBM reveals that the Gly at the -3 position of nephrin-PBM is the determining feature for MAGI1-PDZ3 recognition, which sharply contrasts with the typical PDZ/PBM binding mode. A single gain-of-function mutation within MAGI2 enabled nephrin-PBM binding. In addition, using our structural analysis, we developed a highly efficient inhibitory peptide capable of specifically blocking the nephrin/MAGI1 interaction. CONCLUSIONS: MAGI1 interacts with nephrin-PBM with exquisite specificity. A newly developed, potent inhibitory peptide that blocks this interaction may be useful for future functional investigations in vivo. Our findings also provide possible explanations for the diseases caused by NPHS1 mutations.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Proteínas de la Membrana/metabolismo , Síndrome Nefrótico/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Portadoras/genética , Moléculas de Adhesión Celular , Comunicación Celular , Proteínas de Ciclo Celular , Células Cultivadas , Proteínas del Citoesqueleto , Guanilato-Quinasas/metabolismo , Humanos , Glomérulos Renales/metabolismo , Podocitos/metabolismo , Investigación Cualitativa , Sensibilidad y Especificidad , Transducción de Señal/genética
16.
Biochem J ; 474(16): 2817-2828, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28701415

RESUMEN

The PSD-95 family of membrane-associated guanylate kinases (MAGUKs) are major synaptic scaffold proteins and play crucial roles in the dynamic regulation of dendritic remodelling, which is understood to be the foundation of synaptogenesis and synaptic plasticity. The guanylate kinase (GK) domain of MAGUK family proteins functions as a phosphor-peptide binding module. However, the GK domain of PSD-95 has been found to directly bind to a peptide sequence within the C-terminal region of neuronal-specific microtubule-associated protein 1A (MAP1A), although the detailed molecular mechanism governing this phosphorylation-independent interaction at the atomic level is missing. In the present study, we determine the crystal structure of PSD-95 GK in complex with the MAP1A peptide at 2.6-Å resolution. The complex structure reveals that, unlike a linear and elongated conformation in the phosphor-peptide/GK complexes, the MAP1A peptide adopts a unique conformation with a stretch of hydrophobic residues far from each other in the primary sequence clustering and interacting with the 'hydrophobic site' of PSD-95 GK and a highly conserved aspartic acid of MAP1A (D2117) mimicking the phosphor-serine/threonine in binding to the 'phosphor-site' of PSD-95 GK. We demonstrate that the MAP1A peptide may undergo a conformational transition upon binding to PSD-95 GK. Further structural comparison of known DLG GK-mediated complexes reveals the target recognition specificity and versatility of DLG GKs.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de la Membrana/química , Proteínas Asociadas a Microtúbulos/química , Fosfoserina/química , Fosfotreonina/química , Proteínas Recombinantes de Fusión/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Homólogo 4 de la Proteína Discs Large , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Glutatión Transferasa/química , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Imitación Molecular , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
17.
J BUON ; 21(1): 182-90, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27061547

RESUMEN

PURPOSE: To study the antiproliferative effects of myricetin in human glioma U251 cells together with assessing its effects on cell cycle, apoptosis, apoptosis-related proteins, reactive oxygen species (ROS) generation and cell migration. METHODS: Cell viability of human glioma cells after myricetin treatment was assessed by MTT assay. Phase-contrast and confocal fluorescence microscopies were used to assess the morphological changes that occured in these cells following myricetin treatment. Flow cytometry using propidium iodide (PI) and Annexin-V FITC as probes was employed to evaluate the effects on cell cycle arrest and apoptosis induction, respectively. The effect of myricetin on intracellular ROS production was measured by flow cytometry with a fluorescent probe CM-DCFH2-DA. RESULTS: Myricetin induced a dose-dependent as well as time-dependent growth inhibitory effect in U251 human glioma cells. Myricetin treatment resulted in U251 cells detachment from adjacent cells making clusters of cells floating in the medium. Detached cells had irregular shape and incapable to maintain their membranes intact. Apoptotic cell death was induced by myricetin treatment as witnessed by fluorescence microscopy. The percentage of early and late apoptotic cells increased from 0.41% and 8.2% to 23.1% and 10.2%, 25.2% and 19.4%, to finally 36.2% and 28.4% after treatment with 15 µM, 60 µM and 120 µM of myricetin, respectively. We also observed a dose-dependent increase in Bax and Bad levels and a dose-dependent decrease in Bcl-2 and Bcl-xl expression levels following myricetin treatment. Cell cycle arrest in G2/M phase of the cell cycle was also induced by the drug treatment. A concentration-dependent ROS generation was also witnessed and a 3-fold increase of ROS production was seen after 60 µM myricetin treatment. CONCLUSION: Myricetin exerts anticancer effects in U251 human glioma cells by inducing mitochondrial-mediated apoptosis, G2/M phase cell cycle arrest, ROS generation and inhibition of cell migration.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Flavonoides/farmacología , Glioma/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Caspasas/fisiología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Glioma/metabolismo , Glioma/patología , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/análisis
18.
EMBO J ; 30(24): 4986-97, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-22117215

RESUMEN

Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tissue developments, cell-cell communications, cell polarity control, and cellular signal transductions. Despite extensive studies over the past two decades, the functions of the signature guanylate kinase domain (GK) of MAGUKs are poorly understood. Here we show that the GK domain of DLG1/SAP97 binds to asymmetric cell division regulatory protein LGN in a phosphorylation-dependent manner. The structure of the DLG1 SH3-GK tandem in complex with a phospho-LGN peptide reveals that the GMP-binding site of GK has evolved into a specific pSer/pThr-binding pocket. Residues both N- and C-terminal to the pSer are also critical for the specific binding of the phospho-LGN peptide to GK. We further demonstrate that the previously reported GK domain-mediated interactions of DLGs with other targets, such as GKAP/DLGAP1/SAPAP1 and SPAR, are also phosphorylation dependent. Finally, we provide evidence that other MAGUK GKs also function as phospho-peptide-binding modules. The discovery of the phosphorylation-dependent MAGUK GK/target interactions indicates that MAGUK scaffold-mediated signalling complex organizations are dynamically regulated.


Asunto(s)
Guanilato-Quinasas/química , Fosfoproteínas/química , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Homólogo 1 de la Proteína Discs Large , Guanilato-Quinasas/genética , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Fosfoproteínas/genética , Conformación Proteica , Estructura Terciaria de Proteína , Conejos
19.
PeerJ ; 12: e17397, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784391

RESUMEN

Background: Osteosarcoma is the most common primary malignant bone tumor, but its pathogenesis remains unclear. Ubiquitin-specific processing peptidase 22 (USP22) is reported to be highly expressed and associated with tumor malignancy and prognosis in cancers. However, the role and mechanism of USP22 in osteosarcoma is not fully understood. This study aims to investigate the function and potential mechanism of USP22 in osteosarcoma using bioinformatics analysis combined with experimental validation. Methods: We first integrated transcriptomic datasets and clinical information of osteosarcoma from GEO and TCGA databases to assess the expression and prognostic value of USP22 in osteosarcoma. Then, differential expression analysis and weighted gene co-expression network analysis (WGCNA) were conducted to identify USP22-related co-expressed genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the biological functions and signaling pathways of USP22 co-expressed genes. To validate the accuracy of bioinformatics analyses, we downregulated USP22 expression in osteosarcoma cell line Sao-2 using siRNA and assessed its effect on cell proliferation, migration, invasion, apoptosis, and regulation of key signaling pathways. Results: We found that USP22 was highly expressed in osteosarcoma tissues and correlated with poor prognosis in osteosarcoma patients. USP22 also showed potential as a diagnostic marker for osteosarcoma. In addition, 344 USP22-related co-expressed genes were identified, mainly involved in signaling pathways such as glycolysis, oxidative phosphorylation, spliceosome, thermogenesis, and cell cycle. The in vitro experiments confirmed the accuracy and reliability of bioinformatics analyses. We found that downregulation of USP22 could inhibit Sao-2 cell proliferation, migration, invasion, and induce apoptosis. Furthermore, downregulation of USP22 significantly reduced aerobic glycolysis levels in Sao-2 cells and inhibited the expression of key enzymes and transporters in aerobic glycolysis pathways such as HK2, PKM2, and GLUT1. Conclusions: USP22 plays a critical role in the occurrence, development, and prognosis of osteosarcoma. USP22 could influence Sao-2 cell proliferation, apoptosis, migration, and invasion by regulating the glycolysis pathway, thereby promoting osteosarcoma progression. Therefore, USP22 may be a potential therapeutic target for the treatment of osteosarcoma.


Asunto(s)
Neoplasias Óseas , Proliferación Celular , Biología Computacional , Glucólisis , Osteosarcoma , Ubiquitina Tiolesterasa , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Humanos , Glucólisis/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Línea Celular Tumoral , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proliferación Celular/genética , Pronóstico , Regulación Neoplásica de la Expresión Génica , Apoptosis/genética , Movimiento Celular/genética , Transducción de Señal/genética
20.
Biomed Pharmacother ; 178: 117172, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39128188

RESUMEN

Obesity has shown a global epidemic trend. The high-lipid state caused by obesity can maintain the heart in a prolonged low-grade inflammatory state and cause ventricular remodeling, leading to a series of pathologies, such as hypertrophy, fibrosis, and apoptosis, which eventually develop into obese cardiomyopathy. Therefore, prolonged low-grade inflammation plays a crucial role in the progression of obese cardiomyopathy, making inflammation regulation an essential strategy for treating this disease. Cyy-272, an indazole derivative, is an anti-inflammatory compound independently synthesized by our laboratory. Our previous studies revealed that Cyy-272 can exert anti-inflammatory effects by inhibiting the phosphorylation and activation of C-Jun N-terminal kinase (JNK), thereby alleviating lipopolysaccharide (LPS)-induced acute lung injury (ALI). The current study aimed to evaluate the potential of Cyy-272 to mitigate the occurrence and progression of obese cardiomyopathy through the inhibition of the JNK signaling pathway. Our results indicate that the compound Cyy-272 has encouraging therapeutic effects on obesity-induced cardiac injury. It significantly inhibits inflammation in cardiomyocytes and heart tissues induced by high lipid concentrations, further alleviating the resulting hypertrophy, fibrosis, and apoptosis. Mechanistically, the protective effect of Cyy-272 on obese cardiomyopathy can be attributed to its direct inhibition of JNK protein phosphorylation. In conclusion, we identified a novel compound, Cyy-272, capable of alleviating obese cardiomyopathy and confirmed that its effect is achieved through direct inhibition of JNK.


Asunto(s)
Cardiomiopatías , Indazoles , Proteínas Quinasas JNK Activadas por Mitógenos , Obesidad , Animales , Obesidad/tratamiento farmacológico , Obesidad/complicaciones , Cardiomiopatías/tratamiento farmacológico , Indazoles/farmacología , Indazoles/uso terapéutico , Indazoles/química , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Masculino , Apoptosis/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Ratones Endogámicos C57BL , Ratones , Fibrosis , Antiinflamatorios/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Lipopolisacáridos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA