Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338941

RESUMEN

A polysaccharide from Artocarpus heterophyllus Lam. (jackfruit) pulp (JFP-Ps) is known for its excellent bioactivities. However, its impact on small intestinal barrier function is still largely unexplored. The study aimed to examine the protection effect of JFP-Ps against dextran sodium sulfate-induced enteritis and its underlying mechanism. This research revealed that JFP-Ps mitigated small intestinal tissue damage by reducing the expression of pro-inflammatory cytokines and promoting the expression of the anti-inflammatory cytokine interleukin-10 in the small intestine. JFP-Ps diminished oxidative stress by bolstering the activity of antioxidant enzymes and reducing the concentration of malondialdehyde in the small intestine. In addition, JFP-Ps may restore the mechanical barrier and inhibit intestinal structure damage by augmenting the expression of short-chain fatty acids (SCFAs) receptors (GPR41/43) and up-regulating the expression of tight junction proteins (occludin). In conclusion, JFP-Ps may positively influence intestinal health by relieving oxidative stress in the small intestine, improving mechanical barrier function, activating the SCFA-GPR41/GPR43 axis, and inhibiting TLR4/MAPK pathway activation. The results augment our comprehension of the bioactivities of JFP-Ps, corroborating its great potential as a functional food.


Asunto(s)
Artocarpus , Enteritis , Sulfatos , Ratas , Animales , Artocarpus/química , Dextranos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Citocinas , Enteritis/inducido químicamente , Enteritis/tratamiento farmacológico , Sulfato de Dextran/toxicidad
2.
J Sci Food Agric ; 97(10): 3181-3188, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27885676

RESUMEN

BACKGROUND: Bitter taste is the main limiting factor for various applications of protein hydrolysates. Frequently used physicochemical methods for debittering protein hydrolysates come with some undesired side effects. Deamidation-induced modification would be a very promising technique to improve the flavor of wheat gluten hydrolysates (WGHs). This study was designed to determine the effect of deamidation with certain enzymes or acid treatment on the chemical composition, bitterness and umami properties of WGHs. The difference between umami peptide and free glutamic acid on the suppression of bitterness is emphatically discussed. The optimal scheme is proposed based on the flavor of WGHs and the yield of peptides. RESULTS: The generation of umami substances suppressed bitter signal transduction. When the content of umami substances was relatively high, the umami-enhancing properties of umami peptides were obviously effective. The intensity of umami taste was high enough to further suppress bitter taste in the course of neurocognitive functioning. CONCLUSION: When WGHs were treated with Glutaminase for 180 min, the umami taste score increased from 1.62 to 4.27 and the bitter taste score decreased from 1.33 to 0.65. © 2016 Society of Chemical Industry.


Asunto(s)
Aromatizantes/química , Glútenes/química , Triticum/química , Nariz Electrónica , Ácido Glutámico/análisis , Humanos , Hidrolisados de Proteína/química , Gusto
3.
Int J Mol Sci ; 17(11)2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27834809

RESUMEN

This study was to investigate the bidirectional estrogen-like effects of genistein on murine experimental autoimmune ovarian disease (AOD). Female BALB/c mice were induced by immunization with a peptide from murine zona pellucida. The changes of estrous cycle, ovarian histomorphology were measured, and the levels of serum sex hormone were analyzed using radioimmunoassay. Proliferative responses of the ovary were also determined by immunohistochemistry. Administration of 25 or 45 mg/kg body weight genistein enhanced ovary development with changes in serum sex hormone levels and proliferative responses. Meanwhile, the proportions of growing and mature follicles increased and the incidence of autoimmune oophoritis decreased, which exhibited normal ovarian morphology in administration of 25 or 45 mg/kg body weight genistein, while a lower dose (5 mg/kg body weight genistein) produced the opposite effect. These findings suggest that genistein exerts bidirectional estrogen-like effects on murine experimental AOD, while a high dose (45 mg/kg body weight) of genistein may suppress AOD.


Asunto(s)
Estradiol/sangre , Genisteína/farmacología , Ooforitis/tratamiento farmacológico , Folículo Ovárico/efectos de los fármacos , Fitoestrógenos/farmacología , Poliendocrinopatías Autoinmunes/tratamiento farmacológico , Administración Oral , Animales , Estradiol/farmacología , Ciclo Estral/efectos de los fármacos , Ciclo Estral/fisiología , Femenino , Hormona Folículo Estimulante/sangre , Hormesis , Humanos , Hormona Luteinizante/sangre , Ratones , Ratones Endogámicos BALB C , Ooforitis/inducido químicamente , Ooforitis/inmunología , Ooforitis/patología , Folículo Ovárico/inmunología , Folículo Ovárico/patología , Péptidos/administración & dosificación , Péptidos/aislamiento & purificación , Poliendocrinopatías Autoinmunes/inducido químicamente , Poliendocrinopatías Autoinmunes/inmunología , Poliendocrinopatías Autoinmunes/patología , Zona Pelúcida/química
4.
Int J Food Sci Nutr ; 66(5): 533-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25822005

RESUMEN

Lactobacillus plantarum, as a probiotic, has many functional properties in human intestinal tract. This study examined the effects of L. plantarum NCU116 on loperamide-induced constipation in a mouse model. Loperamide (5 mg kg(-1)) was injected subcutaneously to induce constipation. Animals were divided to five groups: normal group, constipation group, constipation plus three doses of L. plantarum NCU116 groups (NCU116-L, 10(7) CFU/mL; NCU116-M, 10(8) CFU/mL; NCU116-H, 10(9) CFU/mL; respectively). Mice were treated with the probiotic for 15 d to assess the anti-constipation effects. Fecal parameters, intestinal transit ratio and the production of fecal short chain fatty acids, histological of colon and immunohistochemical in colonic interstitial cells of Cajal (ICC) by c-kit were all improved in L. plantarum NCU116-treated mice as compared to the constipation group. These results demonstrate that L. plantarum NCU116 enhanced gastrointestinal transit and alleviated in mice with loperamide-induced constipation.


Asunto(s)
Colon , Estreñimiento/tratamiento farmacológico , Heces/química , Tránsito Gastrointestinal , Lactobacillus plantarum , Loperamida/efectos adversos , Probióticos , Animales , Antidiarreicos/efectos adversos , Colon/metabolismo , Colon/microbiología , Colon/patología , Estreñimiento/inducido químicamente , Defecación , Ácidos Grasos Volátiles/análisis , Laxativos/uso terapéutico , Masculino , Ratones
5.
Compr Rev Food Sci Food Saf ; 13(4): 347-357, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33412715

RESUMEN

Pasta products and noodles have been staple foods since ancient times in many countries all over the world. These cereal products are still increasingly popular worldwide for their convenience, nutritional properties, special flavor, and taste. Pasta and noodles are essentially the same type of food but differ in their raw materials and shaping process, as well as the people and regions in the world consuming them. Many additives have been developed and are being used today in pasta and noodle products for various purposes. However, due to lack of knowledge about specific uses for some additives, they are sometimes misused by manufacturers. This can lead to opposite technological effects instead and may even cause damage to human health. Due to consumer demands, interest now focuses on natural "green" food additives with broad-spectrum functions, high effectiveness, and low toxicity. In order to provide detailed references for noodle and pasta production, as well as to provide ideas for developing new types of these products, here we summarize the types of natural additives that are being incorporated in pasta and noodle products, mainly for quality improvement and food preservation.

6.
Food Res Int ; 189: 114526, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876602

RESUMEN

The study of the changes in rheological properties and components during the processing of Chinese traditional handmade hollow dried noodle (HHDN) is essential to explaining the excellent quality of HHDN. The dynamic oscillation frequency sweep, stress relaxation, and uniaxial extension characteristics of the dough after kneading, stretching, and resting were investigated at six sampling points during the processing of HHDN. The result showed that stretching led to an increase in G' and G0, and a significant decrease (P < 0.05) in extensibility from 131.02 mm to 57.99 mm. Confocal laser scanning microscopy (CLSM) was used to observe the microstructure of the gluten network, which was destroyed during stretching and restored during resting. Studies of changes in components showed that the stretching process resulted in a decrease in GMP content from 3.24 (g/100 g) to 3.18 (g/100 g), and the resting process resulted in ß-sheets decreasing significantly (P < 0.05). The degree of starch pasting increased significantly (P < 0.05) after stretching. The results of the correlation analysis showed that components changes were highly correlated with the rheological properties during the processing of HHDN.


Asunto(s)
Manipulación de Alimentos , Reología , Harina/análisis , Manipulación de Alimentos/métodos , Glútenes , Microscopía Confocal , Almidón/química , Triticum/química
7.
J Agric Food Chem ; 72(27): 15387-15397, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38920293

RESUMEN

In this study, the protein structural, foaming, and air-water interfacial properties in dough liquor (DL) ultracentrifugated from buckwheat sourdough with different concentrations of an alkali (1.0-2.5% of sodium bicarbonate) were investigated. Results showed that the alkali led to the cross-linking of protein disulfide bonds through the oxidation of free sulfhydryl groups in DL. The alterations in protein secondary and tertiary structures revealed that the alkali caused the proteins in DL to fold, decreased the hydrophobicity, and led to a less flexible but compact structure. The alkali accelerated the diffusion of proteins and decreased the surface tension of DL. In addition, the alkali notably improved the foam stability by up to 34.08% at 2.5% concentration, mainly by increasing the net charge, reducing the bubble size, and strengthening the viscoelasticity of interfacial protein films. Quantitative proteomic analysis showed that histones and puroindolines of wheat and 13S globulin of buckwheat were closely related to the changes in the alkali-induced foaming properties. This study sheds light on the mechanism of alkali-induced improvement in gas cell stabilization and the buckwheat sourdough steamed bread quality from the aspect of the liquid lamella.


Asunto(s)
Álcalis , Pan , Fagopyrum , Proteínas de Plantas , Proteómica , Fagopyrum/química , Proteínas de Plantas/química , Pan/análisis , Álcalis/química , Fermentación , Agua/química , Harina/análisis , Interacciones Hidrofóbicas e Hidrofílicas
8.
Foods ; 13(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38540860

RESUMEN

This study investigated the effects of dough proofing degree (1.1, 1.3, 1.5, and 1.7 mL/g) and carboxymethyl cellulose sodium (CMC-Na) on the quality of frozen dough steamed bread (FDSB). As the dough proofing degree was increased from 1.1 to 1.7 mL/g, the specific volume of FDSB initially increased and then decreased, with the maximum at 1.3 mL/g, and then dramatically decreased at 1.5 and 1.7 mL/g, accompanied by a harder texture and secession of crust and crumb, which were the detrimental effects brought by over-proofing. The optimal amount of CMC-Na effectively alleviated the deterioration associated with over-proofing, and the proofing tolerance of FDSB was increased from 1.3 mL/g to 1.7 mL/g. Fermentation analysis showed that CMC-Na significantly improved the extensibility and gas-holding capacity of the dough by increasing the maximum height of the dough (Hm) and the emergence time (T1) of Hm. Frequency sweep tests indicated that CMC-Na improved the plasticity of proofed dough by increasing loss factor tan δ. Significant reductions were found in peak viscosity and complex modulus G* in pasting properties tests and temperature sweep measurements, respectively, suggesting that CMC-Na influenced starch gelatinization and dough stiffening during steaming, which promoted the extension of the network structure, thus facilitating gas expansion and diffusion. These property changes theoretically explained the improvement in the proofing tolerance of FDSB by CMC-Na.

9.
Food Chem ; 440: 138205, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113647

RESUMEN

This study investigated the effects of ethanol (0 %∼6%) on the dough mechanical properties and quality characteristics of fresh noodles and elucidated the relationship between the above changes and physicochemical, structural, and molecular properties of gluten. Ethanol reduced the water absorption (from 59.00 % to 52.33 %), stability time (from 8.17 min to 3.33 min) and viscoelasticity of dough, and increased the development time, weakening degree and compliance. Ethanol also decreased the fracture stress of dough sheet, and increased fracture elongation and adhesiveness (from 46.15 g·s to 75.88 g·s). Ethanol decreased the noodles' hardness (from 5347.41 g to 4442.34 g), break force, tensile distance, and water absorption, while cooking loss was increased. SEM and CLSM showed that ethanol destroyed the compactness of internal structure and inhibited the formation of gluten network in noodles. According to the results of SE-HPLC and RP-HPLC, ethanol dissolved part of the gliadin and inhibited the polymerization of protein.


Asunto(s)
Harina , Glútenes , Harina/análisis , Glútenes/química , Calidad de los Alimentos , Gliadina , Culinaria , Agua/química
10.
Food Chem ; 445: 138775, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401315

RESUMEN

To overcome the problem that takeaway noodles possessed poor immersion resistance, in this study noodles were prepared from post-ripened wheat flour, and changes in textural properties, protein components, and water status of noodles were determined. The firmness and tensile distance of noodles were gradually increased by 7.40%-35.88% when wheat flour was post-ripened for 20-40 d. Afterwards, noodle textural qualities were slightly decreased. Compared with control groups, contents of glutenin macropolymer (GMP) and disulfide bonds were significantly (p<0.05) increased and protein network was also more compact, whereas the Glutenin/Gliadin ratio and free sulfhydryl groups content were significantly (p<0.05) reduced. Contents of sodium dodecyl sulfate extractable protein (SDSEP) were reduced by 3.22%-6.23%. Meanwhile, the decrease in A23 indicated that wheat flour post-ripening limited water-absorbing capacity of noodles during immersion. In conclusion, wheat flour post-ripening promoted the immersion resistance of noodles by inducing protein cross-linking, and the best post-ripening time was 20-40 d.


Asunto(s)
Harina , Inmersión , Harina/análisis , Triticum/química , Gliadina , Agua , Culinaria
11.
Int J Biol Macromol ; 265(Pt 2): 130928, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513901

RESUMEN

In this study, black highland barley semi-dried noodles (BHBSNs) were adjusted to acidic pH (5.0, 4.5, 4.0) with an acidity regulator (monosodium fumarate) for obtaining low glycemic index (GI) BHBSNs, and the changes in the in vitro starch digestion, free phenolic content, and α-amylase activity in BHBSNs were investigated. The estimated glycemic index (eGI) of BHBSNs decreased from 59.23 to 52.59, 53.89 and 53.61, respectively, as the pH was adjusted from 6.0 to 5.0, 4.5, 4.0. As the pH of BHBSNs decreased, the equilibrium hydrolysis (C∞) decreased, and kinetic coefficient (k) decreased and then increased. Compared to the control, the pH of the digestive fluid decreased during digestion with decreasing pH, and the α-amylase inhibition of BHBSNs with pH 5.0, 4.5, and 4.0 increased by 56.54 %, 75.18 %, and 107.98 %, respectively. In addition, as the pH of BHBSNs decreased, the free phenolic content and the content of released phenolics during digestion increased. Pearson correlations analysis showed that the increase in α-amylase inhibition and phenolic release during digestion induced by acidic pH was negatively correlated with the eGI and C∞ of BHBSNs. This study indicated that acidic pH condition could modulate starch digestion for preparing low GI BHBSNs.


Asunto(s)
Hordeum , Almidón , Almidón/química , alfa-Amilasas , Fenoles/farmacología , Digestión , Concentración de Iones de Hidrógeno
12.
Foods ; 13(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38790811

RESUMEN

Starch, as a primary component of wheat, plays a crucial role in determining the quality of noodles and pasta. A deep understanding of the impact of starch on the quality of noodles and pasta is fundamentally important for the industrial progression of these products. The starch structure exerts an influence on the quality of noodles and pasta by affecting its functional attributes and the interaction of starch-gluten proteins. The effects of starch structure (amylopectin structure, amylose content, granules size, damaged starch content) on the quality of noodles and pasta is discussed. The relationship between the functional properties of starch, particularly its swelling power and pasting properties, and the texture of noodles and pasta is discussed. It is important to note that the functional properties of starch can be modified during the processing of noodles and pasta, potentially impacting the quality of the end product, However, this aspect is often overlooked. Additionally, the interaction between starch and gluten is addressed in relation to its impact on the quality of noodles and pasta. Finally, the application of exogenous starch in improving the quality of noodles and pasta is highlighted.

13.
Nutrients ; 16(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38201995

RESUMEN

In recent years, Artocarpus heterophyllus Lam. (jackfruit) polysaccharides (namely JFP-Ps) have attracted much attention due to their multiple biological activities. This study aimed to explore the protective effects and the underlying mechanisms of JFP-Ps on cyclophosphamide (Cp)-induced liver damage. The protective effect of JFP-Ps was evaluated using HE staining, antioxidant testing, enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (RT-qPCR), Western blot and ultra-performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) metabolomics analysis. The results showed that Cp caused pathological liver damage, activated oxidative stress and downregulated cytokine expression, while JFP-Ps treatment was found to exert antioxidant effects and play immune regulatory roles through mitogen-activated protein kinase/nuclear factor-κB (MAPK/NF-κB) related inflammation and cell apoptosis pathways to protect the Cp-induced liver injury. Metabolomic results showed that the liver-protective effects of JFP-Ps were mainly related to aminoacyl transfer ribonucleic acid (tRNA) biosynthesis, sphingolipid metabolism, purine metabolism and the citrate cycle. These results indicate that JFP-Ps have great potential application in alleviating liver injury.


Asunto(s)
Artocarpus , Animales , Ratones , Espectrometría de Masas en Tándem , Hígado , Polisacáridos/farmacología , Antioxidantes/farmacología , Ciclofosfamida/toxicidad
14.
Foods ; 13(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38472814

RESUMEN

This study investigated the immunoprotective effects of the extract of Vanilla planifolia Andrew (EVPA) on cyclophosphamide (Cy)-induced immunosuppression in mice. The results show that EVPA administration significantly alleviated the immune damage induced by Cy, as evidenced by an improved body weight, organ index, and colonic injury. A further analysis of microbial diversity revealed that the EVPA primarily increased the abundance of the beneficial bacteria Verrucomicrobiota, Lactobacillaceae, and Lactobacillus while decreasing Akkermansiaceae, Akkermansia, Romboutsia, and Lactococcus, thereby ameliorating the microbial dysbiosis caused by Cy. A metabolomic analysis revealed significant alterations in the microbial metabolite levels after EVPA treatment, including urobilinogen, formamidopyrimidine nucleoside triphosphate, Cer (d18:1/18:0), pantetheine, and LysoPC (15:0/0:0). These altered metabolites are associated with pathways related to sphingolipid metabolism, carbapenem biosynthesis, pantothenate and CoA biosynthesis, glycerophospholipid metabolism, and porphyrin metabolism. Furthermore, significant correlations were observed between certain microbial groups and the differential metabolites. These findings provide new insights into the immunomodulatory effects of EVPA on the intestinal microbiota and metabolism, laying the foundation for more extensive utilization.

15.
Foods ; 13(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38540856

RESUMEN

The differences in chemical components, nutritional value, volatile organic compounds, antioxidant activity and α-glucosidase inhibiting capacity in vitro in coconut waters with different maturities (8, 10, and 12 months after pollination and germination height below 10 cm were named CW-8, CW-10, CW-2, and MCW, respectively) from the tall coconut variety were compared and analyzed. Results showed that as the maturity increased, the ash and reducing sugar in coconut water gradually decreased, while the protein content and fatty acids continued to increase. Potassium, phosphorus, and sodium in four coconut waters showed a trend of first increasing and then decreasing, and CW-12 had the highest content of 2133.85 mg/kg, 239.74 mg/kg, and 310.75 mg/kg, respectively. The volatile organic compounds (VOCs) present in higher amounts are alcohols and esters in coconut waters, among which 2-methylbutyl acetate, ethyl acetate monomer, and 2-methyl-1-propanol dimer were the characteristic volatile substances that distinguish MCW from the other three coconut waters. MCW has the best DPPH-scavenging and ferrous-ion-chelating ability (87.39% and 7.65%), while CW-8 had the highest hydroxyl and ABTS radicals scavenging rate (97.31% and 83.48%) and α-glucosidase inhibitory rate (81.36%). These results can provide support for the differential and high-value utilization of coconut water with different maturities.

16.
Food Chem X ; 21: 101076, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38187942

RESUMEN

Noni (Morinda citrifolia L.) is a tropical fruit rich in bioactive compounds. Little is known about its polyphenol composition at different ripeness levels and digestive characteristics. Here, we studied changes in polyphenols and antioxidant activity as noni ripened. Rutin and kaempferol-3-O-rutinoside were found in high amounts in noni, with antioxidant capacity increasing as it ripened. Under simulated digestion, polyphenols were gradually released from the oral to gastrointestinal phases, partially decomposing in the small intestine due to their instability. Conversely, fiber-bound phenols were released during colonic fermentation, leading to high bioaccessible antioxidant activity. Additionally, noni consumption affected the intestinal microbiome by reducing the Firmicutes/Bacteroidetes ratio and increasing bacteria with prebiotic properties like Prevotella and Ruminococcus. These findings demonstrate that polyphenols significantly contribute to the health benefits of noni fruit by providing absorbable antioxidants and improving the structure of the intestinal microbiome.

17.
Front Public Health ; 12: 1295531, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633228

RESUMEN

Objective: The aim of this study was to evaluate the present status of self-management behavior and glycemic control in individuals diagnosed with Type 2 Diabetes Mellitus (T2D), as well as to examine the impact of health quotient (HQ) and time management skills on both self-management behavior and glycemic control. Methods: Between October 2022 and March 2023, a purposive sampling method had been utilized to select 215 participants with type T2D. The survey concluded a general information questionnaire, an HQ scale, a diabetes time management questionnaire and a self-management behavior questionnaire. The health quotient(HQ)encompasses the individuals' knowledge, attitude toward health, and the ability to maintain their own well-being. The diabetes time management questionnaire was reverse-scored, with higher scores indicating an enhanced competence in time management. The path among variables was analyzed using structural equation modeling(SEM). Results: SEM showed that the direct effect of HQ on time management was -0.566 (p < 0.05), the direct effect of time management on the effect of self-management was -0.617 (p < 0.05), the direct effect of HQ on self-management was 0.156, and the indirect effect was 0.349 (p < 0.05); the relationship between health quotient and self-management was partially mediated by time management, with a mediating effect size of 68.8%. In addition, self-management had a direct effect on HbAlc, with a size of -0.394 (p < 0.05); The impacts of both HQ and time management on HbAlc were found to be mediated by self-management, with HQ demonstrating an indirect effect of -0.199 (p < 0.05) and time management showing an indirect effect of 0.244 (p < 0.05). Conclusion: Health quotient and time management in patients with T2D serve as catalysts for self-management behavior. They affect HbAlc level indirectly through self-management practices. The suggestion is to prioritize the cultivation of rational time organization and management skills in T2D patients, as well as enhance their health quotient level. This can facilitate a more effective improvement in patients' self-management behaviors, ultimately achieving the objective of maintaining optimal glycemic control.


Asunto(s)
Diabetes Mellitus Tipo 2 , Automanejo , Humanos , Automanejo/métodos , Administración del Tiempo , Control Glucémico , Glucemia
18.
Plant Foods Hum Nutr ; 68(2): 124-30, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23649294

RESUMEN

The objective of this study was to determine molecular weight subunit distributions of soy protein isolate (SPI) by SDS-PAGE and gel size exclusion chromatography, and further to investigate the differences of thixotropy, viscosity, in vitro digestibility and immunoreactivity of SPI for infant formula produced in Chinese domestic companies and world famous SPI manufacturers such as Dupont and Fuji. The molecular subunit distributions were analyzed by SDS-PAGE and gel size exclusion chromatography, indicating that Solae and Fuji were hydrolyzed by proteolytic enzymes. The thixotropy of Fuji and Solae significantly reduced around by 95 %, compared with those of Mantianxue and Dupont Zhengzhou. The allergen contents of Fuji and Solae strikingly decreased by 60 and 84 % respectively, in contrast to that of Mantianxue. The in vitro protein digestibility of Solae at the end of pepsin and trypsin digestion markedly increased by 11.7 and 11.3 %, respectively, in comparison to those of Mantianxue. Suitable enzymatic hydrolyzed SPIs showed lower thixotropy, viscosity, immunoreactivity and higher in vitro protein digestibility than those from the other SPIs. The lower thixotropy indicates low difficulty or shear stress in swallowing for infants. The lower immunoreactivity will improve the safety of SPI for cow milk allergic babies.


Asunto(s)
Fórmulas Infantiles , Proteínas de Soja/química , Proteínas de Soja/inmunología , Alérgenos/análisis , China , Cromatografía en Gel , Digestión , Electroforesis en Gel de Poliacrilamida , Industria de Alimentos , Humanos , Lactante , Peso Molecular , Pepsina A/química , Pepsina A/metabolismo , Proteolisis , Tripsina/química , Tripsina/metabolismo
19.
Food Chem ; 404(Pt B): 134730, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36323045

RESUMEN

This study investigated the heat-induced interactions between wheat and buckwheat proteins by heating wheat proteins, buckwheat albumin, globulin, and mixtures of wheat flour with buckwheat albumin/globulin at 50, 65, 80, 95, and 100 °C. The results showed that the cross-linking reactions of wheat glutenin with buckwheat albumin and globulin initiated at 80 and 95 °C, respectively. Buckwheat albumin decreased the extractability of α-gliadin by 35 % at 95 °C and 5.9 % at 100 °C. The linkage of buckwheat globulin to wheat glutelin prevented part of the wheat gliadin from linking to glutelin, resulting in the extractability of α- and γ-gliadin increased by 8.6 % and 11 % at 95 °C, respectively. The chemical forces results indicated that interactions between wheat and buckwheat proteins were primarily driven by disulfide bonds and hydrophobic interactions. This study provides a theoretical basis for better regulating the wheat-buckwheat protein network to improve the quality of buckwheat-enriched products.


Asunto(s)
Fagopyrum , Globulinas , Triticum/química , Fagopyrum/química , Harina/análisis , Gliadina/química , Calor , Globulinas/química , Albúminas
20.
Carbohydr Polym ; 309: 120704, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36906365

RESUMEN

In this study, the effects of chitosan oligosaccharides (COS) on the microbial stability and quality properties of fresh wet noodles were evaluated. The addition of COS prolonged the shelf-life of fresh wet noodles at 4 °C by 3-6 days and effectively inhibited the growth of acidity value. However, the presence of COS increased the cooking loss of noodles significantly (P < 0.05) and decreased the hardness as well as tensile strength significantly (P < 0.05). The enthalpy of gelatinization (ΔH) was decreased by COS in the differential scanning calorimetry (DSC) analysis. Meanwhile, the addition of COS decreased the relative crystallinity of starch (from 24.93 % to 22.38 %) without changing the type of X-ray diffraction pattern, revealing that COS weakened the structural stability of starch. In addition, COS was observed to impair the development of compact gluten network by confocal laser scanning micrographs. Further, the free-sulfhydryl groups content and sodium dodecyl sulphate-extractable protein (SDS-EP) values of cooked noodles increased significant (P < 0.05), confirming the obstruction on the polymerization of gluten proteins during the hydrothermal process. Although COS adversely affected the quality of noodles, it was outstanding and feasible for the preservation of fresh wet noodles.


Asunto(s)
Quitosano , Harina/análisis , Glútenes/química , Culinaria , Almidón/química , Oligosacáridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA