Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Dis ; 107(4): 1166-1171, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36205690

RESUMEN

Glomerella leaf spot (GLS) caused by Glomerella cingulata is a newly emerging disease that results in severe defoliation and fruit spots in apples. In China, the compound of pyraclostrobin and tebuconazole was registered to control GLS in 2018 and has achieved excellent control efficiency. In this study, we showed that the high-level resistant isolates of G. cingulata to pyraclostrobin, caused by the point mutation at codon 143 (GGT→GCT, G143A) in the cytochrome b gene, has appeared in apple orchards in Shandong Province in 2020, and the resistance frequency was 4.8%. Based on the genotype of the resistant isolates, we developed a loop-mediated isothermal amplification (LAMP) assay for detection of the pyraclostrobin resistance. The LAMP assay was demonstrated to have good specificity, sensitivity, and repeatability, and it exhibited high accuracy in detecting pyraclostrobin resistance in the field. This study reported the resistance status of GLS to pyraclostrobin in Shandong Province and developed a molecular tool for the detection of pyraclostrobin resistance, which is of practical significance for the scientific control of GLS.


Asunto(s)
Fungicidas Industriales , Malus , Mutación Puntual , Fungicidas Industriales/farmacología , Estrobilurinas/farmacología
2.
Eur J Pharmacol ; 966: 176352, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38290567

RESUMEN

BACKGROUND: Curcumin nicotinate (Curtn), derived from curcumin and niacin, reduces serum LDL-C levels, partly due to its influence on PCSK9. This study investigates IDOL's role in Curtn's lipid-lowering effects. OBJECTIVE: To elucidate Curtn's regulation of the IDOL/LDLR pathway and potential molecular mechanisms in hepatocytes. METHODS: Differential metabolites in Curtn-treated HepG2 cells were identified via LC-MS. Molecular docking assessed Curtn's affinity with IDOL. Cholesterol content and LDLR expression effects were studied in high-fat diet Wistar rats. In vitro evaluations determined Curtn's influence on IDOL overexpression's LDL-C uptake and LDLR expression in hepatocytes. RESULTS: Lipids were the main differential metabolites in Curtn-treated HepG2 cells. Docking showed Curtn's higher affinity to IDOL's FERM domain compared to curcumin, suggesting potential competitive inhibition of IDOL's binding to LDLR. Curtn decreased liver cholesterol in Wistar rats and elevated LDLR expression. During in vitro experiments, Curtn significantly enhanced the effects of IDOL overexpression in HepG2 cells, leading to increased LDL-C uptake and elevated expression of LDL receptors. CONCLUSION: Curtn modulates the IDOL/LDLR pathway, enhancing LDL cholesterol uptake in hepatocytes. Combined with its PCSK9 influence, Curtn emerges as a potential hyperlipidemia therapy.


Asunto(s)
Curcumina , Curcumina/análogos & derivados , Niacina/análogos & derivados , Proproteína Convertasa 9 , Ratas , Animales , LDL-Colesterol , Curcumina/farmacología , Ratas Wistar , Simulación del Acoplamiento Molecular , Ubiquitina-Proteína Ligasas/metabolismo , Hepatocitos/metabolismo , Receptores de LDL/metabolismo , Colesterol , Lipoproteínas LDL/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA