RESUMEN
Little filtered cigars are tobacco products with many cigarette-like characteristics. However, despite cigars falling under the U.S. Food and Drug Administration regulatory authority, characterizing flavors, which are still allowed in little filtered cigars, and filter design may influence how people use the products and the resulting exposure to harmful and potentially harmful constituents. We estimated nicotine mouth level intake (MLI) from analyses of little cigar filter butt solanesol levels, brand characteristics, carbon monoxide boost, and puff volume in 48 dual cigarette/cigar users during two repeat bouts of ad lib smoking of three little filtered cigar brands. Mean nicotine MLI for the three brands was significantly different with Swisher Sweets (0.1% ventilation) Cherry at 1.20 mg nicotine, Cheyenne Menthol (1.5%) at 0.63 mg, and Santa Fe unflavored (49%) at 0.94 mg. The association between nicotine MLI and puff volume was the same between Cheyenne Menthol and Santa Fe unflavored. However, these were different from Swisher Sweets Cherry. At least five main factorsâflavor, ventilation, filter design, nicotine delivery related to tar, and user puff volumeâmay directly or indirectly impact MLI and its association with other measures. We found that users of little filtered cigars that have different filter ventilation and flavor draw dissimilar amounts of nicotine from the product, which may be accompanied by differences in exposure to other harmful smoke constituents.
Asunto(s)
Nicotina , Productos de Tabaco , Adulto , Humanos , Nicotina/análisis , Mentol , Productos de Tabaco/análisis , Fumar , Nicotiana , Boca/químicaRESUMEN
Background. Benzene is a known human carcinogen. Human exposure to benzene can be assessed by measuring trans, trans-muconic acid (MUCA) in urine. Golestan Province in northeastern Iran has been reported to have high incidence of esophageal cancer linked to the use of tobacco products. This manuscript evaluates the urinary MUCA concentrations among the participants of the Golestan Cohort Study (GCS).Methods. We analyzed MUCA concentration in 177 GCS participants' urine samples and performed nonparametric pairwise multiple comparisons to determine statistically significant difference among six different product use groups. Mixed effects model was fitted on 22 participants who exclusively smoked cigarette and 51 participants who were classified as nonusers. The urinary MUCA data were collected at the baseline and approximately five years later, and intraclass correlation coefficient (ICC) was calculated from the model.Results. Compared with nonusers, tobacco smoking was associated with higher urinary MUCA concentrations. Based on the nonparametric test of pairwise multiple comparisons, MUCA concentrations among participants who smoked combusted tobacco products were statistically significantly higher compared to nonusers. Urinary MUCA collected five years apart from the same individuals showed moderate reliability (ICC = 0.41), which was expected given the relatively short half-life (â¼6 h) of MUCA.Conclusion. Our study revealed that tobacco smoke was positively associated with increased levels of urinary MUCA concentration, indicating that it is a significant source of benzene exposure among GCS participants.
Asunto(s)
Benceno , Humo , Humanos , Benceno/análisis , Biomarcadores/orina , Estudios de Cohortes , Reproducibilidad de los ResultadosRESUMEN
INTRODUCTION: To date, no studies have evaluated the consistency of biomarker levels in people who smoke over a long-time period in real-world conditions with a large number of subjects and included use behavior and measures of nicotine metabolism. We evaluated the variability of biomarkers of nicotine exposure over approximately a 1-year period in people who exclusively smoke cigarettes, including intensity and recency of use and brand switching to assess impact on understanding associations with product characteristics. AIMS AND METHODS: Multivariate regression analysis of longitudinal repeated measures of urinary biomarkers of nicotine exposure from 916 adults in the Population Assessment of Tobacco and Health (PATH) Study with demographic characteristics and use behavior variables. Intraclass correlation coefficients (ICCs) were calculated to examine individual variation of nicotine biomarkers and the uncertainty of repeat measures at two time points (Waves 1 and 2). RESULTS: Age, race, and urinary creatinine were significant covariates of urinary cotinine. When including use behavior, recency, and intensity of use were highly significant and variance decreased to a higher extent between than within subjects. The ICC for urinary cotinine decreased from 0.7530 with no use behavior variables in the model to 0.5763 when included. Similar results were found for total nicotine equivalents. CONCLUSIONS: Urinary nicotine biomarkers in the PATH Study showed good consistency between Waves 1 and 2. Use behavior measures such as time since last smoked a cigarette and number of cigarettes smoked in the past 30 days are important to include when assessing factors that may influence biomarker concentrations. IMPLICATIONS: The results of this study show that the consistency of the nicotine biomarkers cotinine and total nicotine equivalents in spot urine samples from Waves 1 to 2 of the PATH Study is high enough that these data are useful to evaluate the association of cigarette characteristics with biomarkers of exposure under real-world use conditions.
Asunto(s)
Nicotina , Productos de Tabaco , Adulto , Humanos , Nicotina/análisis , Cotinina/orina , Nicotiana/metabolismo , Productos de Tabaco/análisis , Biomarcadores/análisisRESUMEN
INTRODUCTION: Cotinine is a widely used biomarker for classifying cigarette smoking status. However, cotinine does not differentiate between the use of combustible and noncombustible tobacco products. The increasing use of noncombustible tobacco drives the need for a complementary biomarker for distinguishing cigarette smokers from users of noncombustible tobacco products. AIMS AND METHODS: We evaluated the urinary acrylonitrile metabolite, 2CyEMA, as a biomarker of exposure to cigarette smoke in the US population-representative data from the National Health and Nutritional Examination Survey (NHANES). Smoking status was categorized based on the recent tobacco use questionnaire. The receiver operating characteristic (ROC) curve analysis was performed to identify optimal cutoff concentrations by maximizing Youden's J index. The area under the curve (AUC) was used to compare 2CyEMA effectiveness with respect to serum cotinine. RESULTS: The overall cutoff concentration for the classification of cigarette smokers from nonsmokers was 7.32 ng/ml with high sensitivity and specificity (≥0.925). When stratified by demographic variables, the cutoff concentrations varied among subgroups based on age, sex, and race/Hispanic origin. Non-Hispanic Blacks had the highest cutoff concentration (15.3 ng/ml), and Hispanics had the lowest (4.63 ng/ml). Females had higher cutoff concentrations (8.80 ng/ml) compared to males (6.10 ng/ml). Among different age groups, the cutoff concentrations varied between 4.63 ng/ml (21-39 years old) and 10.6 ng/ml (for ≥60 years old). We also explored the creatinine adjusted cutoff values. CONCLUSIONS: 2CyEMA is an effective biomarker for distinguishing cigarette smokers from nonsmokers (users of noncombustible tobacco products or nonusers). IMPLICATIONS: Distinguishes smokers from noncombustible tobacco product users.
Asunto(s)
Acetilcisteína , Productos de Tabaco , Biomarcadores/orina , Preescolar , Cotinina , Femenino , Humanos , Masculino , No Fumadores , Encuestas Nutricionales , FumadoresRESUMEN
2-carbamoylethyl mercapturic acid (2CaEMA, N-Acetyl-S-carbamoylethyl-L-cysteine) is a urinary metabolite and exposure biomarker of acrylamide, which is a harmful volatile organic compound found in cigarette smoke and in some foods. The goal of this study was to determine the association between cigarette smoking and urinary 2CaEMA concentrations among the U.S. population while considering potential dietary sources of acrylamide intake and demographics. We measured 2CaEMA concentrations in urine specimens collected during the National Health and Nutrition Examination Survey 2011-2012, 2013-2014, and 2015-2016 cycles from eligible participants 18 years and older (n = 5443) using liquid chromatography/tandem mass spectrometry. We developed multiple regression models with urinary 2CaEMA concentrations as the dependent variable and sex, age, race/Hispanic origin, reported primary sources of dietary acrylamide intake, and cigarette smoke exposure as independent variables. This study demonstrates that cigarette smoking is strongly associated with urinary 2CaEMA, suggests that cigarette smoking is likely a primary source of acrylamide exposure, and provides a baseline measure for 2CaEMA in the U.S. population.
Asunto(s)
Fumar Cigarrillos , Acetilcisteína , Acrilamida , Cromatografía Liquida , Humanos , Encuestas NutricionalesRESUMEN
1,3-Butadiene is a volatile organic compound with a gasoline-like odour that is primarily used as a monomer in the production of synthetic rubber. The International Agency for Research on Cancer has classified 1,3-butadiene as a human carcinogen. We assessed 1,3-butadiene exposure in the U.S. population by measuring its urinary metabolites N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (34HBMA), N-acetyl-S-(1-hydroxymethyl-2-propenyl)-L-cysteine (1HMPeMA), N-acetyl-S-(2-hydroxy-3-butenyl)-L-cysteine (2HBeMA), and N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine (4HBeMA). Urine samples from the 2011 to 2016 National Health and Nutrition Examination Survey were analysed for 1,3-butadiene metabolites using ultrahigh-performance liquid chromatography/tandem mass spectrometry. 34HBMA and 4HBeMA were detected in >96% of the samples; 1HMPeMA and 2HBeMA were detected in 0.66% and 9.84% of the samples, respectively. We used sample-weighted linear regression models to examine the influence of smoking status (using a combination of self-reporting and serum-cotinine data), demographic variables, and diet on biomarker levels. The median 4HBeMA among exclusive smokers (31.5 µg/g creatinine) was higher than in non-users (4.11 µg/g creatinine). Similarly, the median 34HBMA among exclusive smokers (391 µg/g creatinine) was higher than in non-users (296 µg/g creatinine). Furthermore, smoking 1-10, 11-20, and >20 cigarettes per day (CPD) was associated with 475%, 849%, and 1143% higher 4HBeMA (p < 0.0001), respectively. Additionally, smoking 1-10, 11-20, and >20 CPD was associated with 33%, 44%, and 102% higher 34HBMA (p < 0.0001). These results provide significant baseline data for 1,3-butadiene exposure in the U.S. population, and demonstrate that tobacco smoke is a major exposure source.
Asunto(s)
Biomarcadores/orina , Butadienos/orina , Carcinógenos/análisis , Exposición a Riesgos Ambientales/análisis , Encuestas Nutricionales/estadística & datos numéricos , Adolescente , Adulto , Butadienos/química , Butadienos/metabolismo , Carcinógenos/química , Carcinógenos/metabolismo , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Estructura Molecular , Encuestas Nutricionales/métodos , Fumadores/estadística & datos numéricos , Estados Unidos , Adulto JovenRESUMEN
BACKGROUND: 2-Hydroxyethyl mercapturic acid (2HEMA, N-acetyl-S-(2-hydroxyethyl)-L-cysteine) is a urinary metabolite of several volatile organic compounds including acrylonitrile and ethylene oxide, which are found in cigarette smoke. METHODS: We measured 2HEMA concentrations in urine specimens collected during the National Health and Nutrition Examination Survey (2011-2016) from eligible participants aged >12 years (N = 7,416). We developed two multiple linear regression models to characterize the association between cigarette smoking and 2HEMA concentrations wherein the dependent variable was 2HEMA concentrations among participants who exclusively smoked cigarettes at the time of specimen collection and the independent variables included sex, age, race/ethnicity, creatinine, diet, and either cigarettes smoked per day (CPD) or serum cotinine. RESULTS: We detected 2HEMA in 85% of samples tested among exclusive cigarette smokers, and only 40% of specimens from non-smokers. When compared to exclusive cigarette smokers who smoked 1-9 CPD, smoking 10-19 CPD was associated with 36% higher 2HEMA (p < 0.0001) and smoking >19 CPD was associated with 61% higher 2HEMA (p < 0.0001). Additionally, 2HEMA was positively associated with serum cotinine. CONCLUSIONS: This study demonstrates that cigarette smoking intensity is associated with higher urinary 2HEMA concentrations and is likely a major source of acrylonitrile and/or ethylene oxide exposure.
Asunto(s)
Acetilcisteína/análogos & derivados , Fumar Cigarrillos/orina , Acetilcisteína/orina , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encuestas Nutricionales , Adulto JovenRESUMEN
Aim: Xylenes are aromatic hydrocarbons used for industrial applications such as the production of petrochemicals and plastics. Acute xylene exposures can negatively impact health through neurotoxicity and irritation of respiratory and dermal tissues. We quantified urinary biomarkers of xylene exposure [2-methylhippuric acid (2MHA) and a mixture of 3- and 4-methylhippuric acids (34MH)] in a representative sample of the U.S. population. Methods: Spot urine obtained during the National Health and Nutrition Examination Survey 2005-2006 and 2011-2016 was analysed using ultra-high-performance liquid chromatography/tandem mass spectrometry. Exclusive smokers were distinguished from non-users using a combination of self-report and serum cotinine data. Results: The median 2MHA and 34MH levels were higher for exclusive smokers (100 µg/g and 748 µg/g creatinine, respectively) than for non-users (27.4 µg/g and 168 µg/g creatinine, respectively). Participants who smoked cigarettes had significantly higher 2MHA and 34MH levels (p < 0.0001) than unexposed participants. Smoking 1-10, 11-20, and >20 cigarettes per day (CPD) was significantly associated with 181%, 339% and 393% higher 2MHA levels, respectively. For 34MH, smoking 1-10, 11-20, and >20 CPD was significantly associated with 201%, 398%, and 471% higher 34MH levels, respectively. Conclusion: We confirm that tobacco smoke is a significant source of xylene exposure as measured by urinary 2MHA and 34MH levels.
Asunto(s)
Monitoreo Biológico , Biomarcadores/sangre , Biomarcadores/orina , Xilenos/toxicidad , Adolescente , Adulto , Niño , Cotinina/sangre , Femenino , Hipuratos/orina , Humanos , Hidrocarburos Aromáticos/toxicidad , Masculino , Persona de Mediana Edad , Encuestas Nutricionales , Productos de Tabaco , Contaminación por Humo de Tabaco/efectos adversos , Adulto JovenRESUMEN
Aldehydes are known carcinogens and irritants that can negatively impact health. They are present in tobacco smoke, the environment, and food. The prevalence of aldehyde exposure and potential health impact warrants a population-wide study of serum aldehydes as exposure biomarkers. We analyzed 12 aldehydes in sera collected from 1843 participants aged 12 years or older in the 2013-2014 National Health and Nutrition Examination Survey. Several aldehydes were detected at high rates, such as isopentanaldehyde (99.2%) and propanaldehyde (88.3%). We used multiple linear regression models to examine the impact of tobacco smoke and dietary variables on serum concentrations of isopentanaldehyde and propanaldehyde. Although 12 serum aldehydes were analyzed and compared to tobacco smoke exposure, only isopentanaldehyde and propanaldehyde showed any significant association with tobacco smoke exposure. Survey participants who smoked 1-10 cigarettes per day (CPD) had 168% higher serum isopentanaldehyde and 28% higher propanaldehyde compared with nonusers. Study participants who smoked 11-20 CPD had higher serum isopentanaldehyde (323%) and propanaldehyde (70%). Similarly, study participants who smoked >20 CPD had 399% higher serum isopentanaldehyde and 110% higher serum propanaldehyde than nonexposed nonusers. The method could not, however, differentiate between nonexposed nonusers and nonusers exposed to secondhand smoke for either of these two aldehydes. No dietary variables were consistently predictive of serum isopentanaldehyde and propanaldehyde concentrations. This report defines baseline concentrations of serum aldehydes in the U.S. population and provides a foundation for future research into the potential health effects of aldehydes. In addition, this study suggests that tobacco smoke is a significant source of exposure to some aldehydes such as isopentanaldehyde and propanaldehyde.
Asunto(s)
Aldehídos , Contaminación por Humo de Tabaco , Carcinógenos/análisis , Niño , Humanos , Encuestas Nutricionales , NicotianaRESUMEN
INTRODUCTION: Nicotine pouch products, oral smokeless products that contain nicotine but no tobacco leaf material, have recently entered the US marketplace. Available data indicate sales of these products in the United States have increased since 2018; however, the extent of use among US youth and adults is uncertain. METHODS: To assay the chemistry of these emerging tobacco products, we analyzed 37 nicotine pouch brands from six total manufacturers. Almost all of the products had flavor descriptors (36 of 37), such as mint, licorice, coffee, cinnamon, and fruit. The amount of free nicotine, the form most easily absorbed, was calculated for each product using total nicotine, product pH, the appropriate pKa, and the Henderson-Hasselbalch equation. RESULTS: Nicotine pouch products varied in pouch content mass, moisture content (1.12%â47.2%), alkalinity (pH 6.86â10.1), and % free nicotine (7.7%â99.2%). Total nicotine content ranged from 1.29 to 6.11 mg/pouch, whereas free nicotine ranged from 0.166 to 6.07 mg/pouch. These findings indicate that nicotine and pH levels found in some of these nicotine pouches are similar to conventional tobacco products, such as moist snuff and snus, and that most of these pouch products are flavored. CONCLUSIONS: Although these products likely lack many tobacco-related chemicals, each product analyzed contained nicotine, which is both addictive and can harm human health. Given that nicotine pouches may appeal to a spectrum of users, from novice to experienced users, it is important to include these emerging tobacco products in tobacco control research, policy, and practice. IMPLICATIONS: These "tobacco-free" nicotine pouches have similar pH and nicotine content to conventional tobacco products, such as moist snuff and snus. Although they lack many tobacco-related chemicals, most are highly flavored which could increase experimentation from new users. Given that nicotine pouches may appeal to a spectrum of users, from novice to experienced users, in terms of their flavors and nicotine content, it is important to examine and include these emerging tobacco products as they relate to tobacco control research, policy, and practice.
Asunto(s)
Nicotina , Tabaco sin Humo , Adolescente , Adulto , Comercio , Aromatizantes , Humanos , Uso de Tabaco , Estados UnidosRESUMEN
BACKGROUND: There is significant variation surrounding the indications, surgical approaches, and outcomes for children undergoing antireflux procedures (ARPs) resulting in geographic variation of care. Our purpose was to quantify this geographic variation in the utilization of ARPs in children. METHODS: A cross-sectional analysis of the 2009 Kid's Inpatient Database was performed to identify patients with gastroesophageal reflux disease or associated diagnoses. Regional surgical utilization rates were determined, and a mixed effects model was used to identify factors associated with the use of ARPs. RESULTS: Of the 148,959 patients with a diagnosis of interest, 4848 (3.3%) underwent an ARP with 2376 (49%) undergoing a laparoscopic procedure. The Northeast (2.0%) and Midwest (2.2%) had the lowest overall utilization of surgery, compared with the South (3.3%) and West (3.4%). After adjustment for age, case-mix, and surgical approach, variation persisted with the West and the South demonstrating almost two times the odds of undergoing an ARP compared with the Northeast. Surgical utilization rates are independent of state-level volume with some of the highest case volume states having surgical utilization rates below the national rate. In the West, the use of laparoscopy correlated with overall utilization of surgery, whereas surgical approach was not correlated with ARP use in the South. CONCLUSIONS: Significant regional variation in ARP utilization exists that cannot be explained entirely by differences in patient age, race/ethnicity, case-mix, and surgical approach. In order to decrease variation in care, further research is warranted to establish consensus guidelines regarding indications for the use ARPs for children.
Asunto(s)
Fundoplicación/estadística & datos numéricos , Reflujo Gastroesofágico/cirugía , Disparidades en Atención de Salud/estadística & datos numéricos , Pautas de la Práctica en Medicina/estadística & datos numéricos , Adolescente , Niño , Preescolar , Estudios Transversales , Bases de Datos Factuales , Femenino , Fundoplicación/métodos , Humanos , Lactante , Recién Nacido , Laparoscopía/estadística & datos numéricos , Masculino , Modelos Estadísticos , Estados UnidosRESUMEN
BACKGROUND: Biomarkers of exposure are tools for understanding the impact of tobacco use on health outcomes if confounders like demographics, use behavior, biological half-life, and other sources of exposure are accounted for in the analysis. METHODS: We performed multiple regression analysis of longitudinal measures of urinary biomarkers of alkaloids, tobacco-specific nitrosamines, polycyclic aromatic hydrocarbons, volatile organic compounds (VOC), and metals to examine the sample-to-sample consistency in Waves 1 and 2 of the Population Assessment of Tobacco and Health (PATH) Study including demographic characteristics and use behavior variables of persons who smoked exclusively. Regression coefficients, within- and between-person variance, and intra-class correlation coefficients (ICC) were compared with biomarker smoking/nonsmoking population mean ratios and biological half-lives. RESULTS: Most biomarkers were similarly associated with sex, age, race/ethnicity, and product use behavior. The biomarkers with larger smoking/nonsmoking population mean ratios had greater regression coefficients related to recency of exposure. For VOC and alkaloid metabolites, longer biological half-life was associated with lower within-person variance. For each chemical class studied, there were biomarkers that demonstrated good ICCs. CONCLUSIONS: For most of the biomarkers of exposure reported in the PATH Study, for people who smoke cigarettes exclusively, associations are similar between urinary biomarkers of exposure and demographic and use behavior covariates. Biomarkers of exposure within-subject consistency is likely associated with nontobacco sources of exposure and biological half-life. IMPACT: Biomarkers measured in the PATH Study provide consistent sample-to-sample measures from which to investigate the association of adverse health outcomes with the characteristics of cigarettes and their use.
Asunto(s)
Alcaloides , Productos de Tabaco , Compuestos Orgánicos Volátiles , Humanos , Semivida , Biomarcadores , Fumar/epidemiologíaRESUMEN
BACKGROUND: Cigarette smoking increases the risk of cancer, cardiovascular diseases, and premature death. Aromatic amines (AA) are found in cigarette smoke and are well-established human bladder carcinogens. METHODS: We measured and compared total urinary levels of 1-aminonaphthalene (1AMN), 2-aminonaphthalene (2AMN), and 4-aminobiphenyl (4ABP) in adults who smoked cigarettes exclusively and in adult nonusers of tobacco products from a nationally representative sample of non-institutionalized U.S. population in the 2013-2014 National Health and Nutrition Examination Survey. RESULTS: Sample-weighted geometric mean concentrations of AAs in adults who smoked cigarettes exclusively compared with adult nonusers were 30 times higher for 1AMN and 4 to 6 times higher for 2AMN and 4ABP. We evaluated the association of tobacco-smoke exposure with urinary AAs using sample-weighted multiple linear regression models to control for age, sex, race/ethnicity, diet, and urinary creatinine. Secondhand smoke exposure status was categorized using serum cotinine (SCOT) among adult nonusers (SCOT ≤ 10 ng/mL). The exposure for adults who smoked cigarettes exclusively (SCOT > 10 ng/mL) was categorized on the basis of the average number of self-reported cigarettes smoked per day (CPD) in the five days prior to urine collection. The regression models show AAs concentration increased with increasing CPD (P < 0.001). Dietary-intake variables derived from the 24-hours recall questionnaire were not consistently significant predictors of urinary AAs. CONCLUSIONS: This is the first characterized total urinary AA concentrations of the U.S. adult non-institutionalized population. Our analyses show that smoking status is a major contributor to AA exposures. IMPACT: These data provide a crucial baseline for exposure to three AAs in U.S. non-institutionalized adults.
RESUMEN
Anabasine and anatabine are minor alkaloids in tobacco products and are precursors for tobacco-specific nitrosamines (TSNAs). The levels of these two compounds have been used to differentiate tobacco product sources, monitor compliance with smoking cessation programs, and for biomonitoring in TSNA-related studies. The concentrations of urinary anabasine and anatabine were measured in a representative sample of U.S. adults who smoked cigarettes (N = 770) during the 2013−2014 National Health and Nutrition Examination Survey (NHANES) study cycle, which was the first cycle where urinary anabasine and anatabine data became available. Weighted geometric means (GM) and geometric least squares means (LSM) with 95% confidence intervals were calculated for urinary anabasine and anatabine categorized by tobacco-use status [cigarettes per day (CPD) and smoking frequency] and demographic characteristics. Smoking ≥20 CPD was associated with 3.6× higher anabasine GM and 4.8× higher anatabine GM compared with smoking <10 CPD. Compared with non-daily smoking, daily smoking was associated with higher GMs for urinary anabasine (1.41 ng/mL vs. 6.28 ng/mL) and anatabine (1.62 ng/mL vs. 9.24 ng/mL). Urinary anabasine and anatabine concentrations exceeded the 2 ng/mL cut point in 86% and 91% of urine samples from people who smoke (PWS) daily, respectively; in comparison, 100% of them had serum cotinine concentrations greater than the established 10 ng/mL cut point. We compared these minor tobacco alkaloid levels to those of serum cotinine to assess their suitability as indicators of recent tobacco use at established cut points and found that their optimal cut point values would be lower than the established values. This is the first time that anabasine and anatabine are reported for urine collected from a U.S. population-representative sample of NHANES study participants, providing a snapshot of exposure levels for adults who smoked during 2013−2014. The results of this study serve as an initial reference point for future analysis of NHANES cycles, where changes in the national level of urinary anabasine and anatabine can be monitored among people who smoke to show the effect of changes in tobacco policy.
Asunto(s)
Alcaloides , Fumar Cigarrillos , Adulto , Alcaloides/análisis , Anabasina/orina , Biomarcadores/orina , Cotinina/orina , Humanos , Nicotina/análisis , Encuestas Nutricionales , Piridinas , NicotianaRESUMEN
The objective of this study was to examine long-term trends in serum cotinine (COT) concentrations, as a measure of secondhand smoke (SHS) exposure, in U.S. nonsmokers using data from the National Health and Nutrition Examination Surveys (NHANES) from 2003 to 2018. We analyzed NHANES serum COT results from 8 continuous NHANES 2 year cycles from 2003 to 2018 using a liquid chromatography−tandem mass spectrometry assay that has been maintained continuously at the Centers for Disease Control and Prevention (CDC) since 1992. Serum COT concentrations (based on the geometric means) among nonsmokers in the U.S. decreased by an average of 11.0% (95% confidence interval (CI) [8.8%, 13.1%]; p < 0.0001) every 2 year cycle. From 2003 to 2018, serum COT concentrations in U.S. nonsmokers declined by 55.0%, from 0.065 ng/mL in 2003−2004 to 0.029 ng/mL in 2017−2018 (p < 0.0001). Significant decreases in serum COT concentrations were observed in all demographic groups. While disparities between these groups seems to be shrinking over time, several previously observed disparities in SHS exposure remain in 2017−2018. Serum COT concentrations of the non-Hispanic Black population remained higher than those of non-Hispanic Whites and Mexican Americans (p < 0.0001). Additionally, serum COT concentrations were significantly higher for children aged 3−5 years than other age groups (p ≤ 0.0002), and men continued to have significantly higher serum COT concentrations than women (p = 0.0384). While there is no safe level of exposure to SHS, the decrease in serum COT concentrations in the U.S. population as well as across demographic groupings represents a positive public health outcome and supports the importance of comprehensive smoke-free laws and policies for workplaces, public places, homes, and vehicles to protect nonsmokers from SHS exposure.
Asunto(s)
Cotinina , Contaminación por Humo de Tabaco , Niño , Exposición a Riesgos Ambientales , Femenino , Humanos , Masculino , No Fumadores , Encuestas NutricionalesRESUMEN
We characterize nicotine exposure in the U.S. population by measuring urinary nicotine and its major (cotinine, trans-3'-hydroxycotinine) and minor (nicotine 1'-oxide, cotinine N-oxide, and 1-(3-pyridyl)-1-butanol-4-carboxylic acid, nornicotine) metabolites in participants from the 2015−2016 National Health and Nutrition Examination Survey. This is one of the first U.S. population-based urinary nicotine biomarker reports using the derived total nicotine equivalents (i.e., TNEs) to characterize exposure. Serum cotinine data is used to stratify tobacco non-users with no detectable serum cotinine (−sCOT), non-users with detectable serum cotinine (+sCOT), and individuals who use tobacco (users). The molar concentration sum of cotinine and trans-3'-hydroxycotinine was calculated to derive the TNE2 for non-users. Additionally, for users, the molar concentration sum of nicotine and TNE2 was calculated to derive the TNE3, and the molar concentration sum of the minor metabolites and TNE3 was calculated to derive the TNE7. Sample-weighted summary statistics are reported. We also generated multiple linear regression models to analyze the association between biomarker concentrations and tobacco use status, after adjusting for select demographic factors. We found TNE7 is positively correlated with TNE3 and TNE2 (r = 0.99 and 0.98, respectively), and TNE3 is positively correlated with TNE2 (r = 0.98). The mean TNE2 concentration was elevated for the +sCOT compared with the −sCOT group (0.0143 [0.0120, 0.0172] µmol/g creatinine and 0.00188 [0.00172, 0.00205] µmol/g creatinine, respectively), and highest among users (33.5 [29.6, 37.9] µmol/g creatinine). Non-daily tobacco use was associated with 50% lower TNE7 concentrations (p < 0.0001) compared with daily use. In this report, we show tobacco use frequency and passive exposure to nicotine are important sources of nicotine exposure. Furthermore, this report provides more information on non-users than a serum biomarker report, which underscores the value of urinary nicotine biomarkers in extending the range of trace-level exposures that can be characterized.
Asunto(s)
Cotinina , Nicotina , Biomarcadores/metabolismo , Creatinina , Humanos , Nicotina/metabolismo , Encuestas Nutricionales , ÓxidosRESUMEN
BACKGROUND: Acrylonitrile is a possible human carcinogen that is used in polymers and formed in tobacco smoke. We assessed acrylonitrile exposure in the US population by measuring its urinary metabolites N-acetyl-S-(4-hydroxy-2-methyl-2-buten-1-yl)-L-cysteine (2CYEMA) and N-acetyl-S-(1-cyano-2-hydroxyethyl)-L-cysteine (1CYHEMA) in participants from the 2011-2016 National Health and Nutrition Examination Survey. OBJECTIVE: To assessed acrylonitrile exposure using population-based biomonitoring data of the US civilian, non-institutionalized population. METHODS: Laboratory data for 8057 participants were reported for 2CYEMA and 1CYHEMA using ultrahigh-performance liquid chromatography/tandem mass spectrometry. Exclusive tobacco smokers were distinguished from non-users using a combination of self-reporting and serum cotinine data. We used multiple linear regression models to fit 2CYEMA concentrations with sex, age, race/Hispanic origin, and tobacco user group as predictor variables. RESULTS: The median 2CYEMA level was higher for exclusive cigarette smokers (145 µg/g creatinine) than for non-users (1.38 µg/g creatinine). Compared to unexposed individuals (serum cotinine ≤0.015 ng/ml) and controlling for confounders, presumptive second-hand tobacco smoke exposure (serum cotinine >0.015 to ≤10 ng/ml and 0 cigarettes per day, CPD) was significantly associated with 36% higher 2CYEMA levels (p < 0.0001). Smoking 1-10 CPD was significantly associated with 6720% higher 2CYEMA levels (p < 0.0001). SIGNIFICANCE: We show that tobacco smoke is an important source of acrylonitrile exposure in the US population and provide important biomonitoring data on acrylonitrile exposure.
Asunto(s)
Acrilonitrilo , Contaminación por Humo de Tabaco , Biomarcadores , Cotinina , Cisteína , Humanos , Encuestas Nutricionales , Fumar , Contaminación por Humo de Tabaco/análisis , Estados UnidosRESUMEN
Methylcarbamoyl mercapturic acid (MCAMA, N-acetyl-S-(N-methylcarbamoyl)-L-cysteine) is a urinary metabolite of N,N-dimethylformamide and methyl isocyanate, which are volatile organic compounds that are harmful to humans. N,N-dimethylformamide exposure causes liver damage, and methyl isocyanate inhalation damages the lining of the respiratory tract, which can increase risk of chronic obstructive pulmonary disease and asthma. This study characterizes urinary MCAMA levels in the US population and explores associations of MCAMA concentrations with select demographic and environmental factors. We used liquid chromatography tandem mass spectrometry to measure MCAMA in urine collected from study participants ≥ 12 years old (N = 8272) as part of the National Health and Nutrition Examination Survey 2005-2006 and 2011-2016. We produced multiple regression models with MCAMA concentrations as the dependent variable and sex, age, fasting time, race/ethnicity, diet, and cigarette smoking as independent variables. Cigarette smokers and nonsmokers had median urinary MCAMA concentrations of 517 µg/g creatinine and 127 µg/g creatinine, respectively. Sample-weighted multiple regression analysis showed that MCAMA was positively associated with serum cotinine (p < 0.0001). Compared to non-exposed participants (serum cotinine ≤ 0.015 ng/mL), presumptive exposure to second-hand tobacco smoke (serum cotinine > 0.015-≤ 10 ng/mL and 0 cigarettes smoked per day) was associated with 20% higher MCAMA (p < 0.0001). Additionally, smoking 1-10 cigarettes per day was associated with 261% higher MCAMA (p < 0.0001), smoking 11-20 cigarettes per day was associated with 357% higher MCAMA (p < 0.0001), and smoking > 20 cigarettes per day was associated with 416% higher MCAMA (p < 0.0001). These findings underscore the strong association of tobacco smoke exposure with urinary MCAMA biomarker levels.
Asunto(s)
Dimetilformamida , Contaminación por Humo de Tabaco , Acetilcisteína , Biomarcadores , Niño , Cotinina , Humanos , Isocianatos , Encuestas Nutricionales , Contaminación por Humo de Tabaco/análisisRESUMEN
Norovirus is the most common cause of epidemic and endemic acute gastroenteritis. However, national estimates of the infection burden are challenging. This study used a nationally representative serum bank to estimate the seroprevalence to five norovirus genotypes including three GII variants: GI.1 Norwalk, GI.4, GII.3, GII.4 US95/96, GII.4 Farmington Hills, GII.4 New Orleans, and GIV.1 in the USA population (aged 16 to 49 years). Changes in seroprevalence to the three norovirus GII.4 variants between 1999 and 2000, as well as 2003 and 2004, were measured to examine the role of population immunity in the emergence of pandemic GII.4 noroviruses. The overall population-adjusted seroprevalence to any norovirus was 90.0% (1999 to 2000) and 95.9% (2003 to 2004). Seroprevalence was highest to GI.1 Norwalk, GII.3, and the three GII.4 noroviruses. Seroprevalence to GII.4 Farmington Hills increased significantly between the 1999 and 2000, as well as the 2003 and 2004, study cycles, consistent with the emergence of this pandemic strain. Seroprevalence to GII.4 New Orleans also increased over time, but to a lesser degree. Antibodies against the GIV.1 norovirus were consistently detected (population-adjusted seroprevalence 19.1% to 25.9%), with rates increasing with age. This study confirms the high burden of norovirus infection in US adults, with most adults having multiple norovirus infections over their lifetime.
Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/inmunología , Norovirus/genética , Adolescente , Adulto , Infecciones por Caliciviridae/sangre , Variación Genética , Genotipo , Humanos , Persona de Mediana Edad , Norovirus/inmunología , ARN Viral/genética , Estudios Seroepidemiológicos , Estados Unidos/epidemiología , Adulto JovenRESUMEN
Volatile organic compounds (VOCs) are ubiquitous in the environment. In the United States (U.S.), tobacco smoke is the major non-occupational source of exposure to many harmful VOCs. Exposure to VOCs can be assessed by measuring their urinary metabolites (VOCMs). The Population Assessment of Tobacco and Health (PATH) Study is a U.S. national longitudinal study of tobacco use in the adult and youth civilian non-institutionalized population. We measured 20 VOCMs in urine specimens from a subsample of adults in Wave 1 (W1) (2013-2014) to characterize VOC exposures among tobacco product users and non-users. We calculated weighted geometric means (GMs) and percentiles of each VOCM for exclusive combustible product users (smokers), exclusive electronic cigarette (e-cigarette) users, exclusive smokeless product users, and tobacco product never users. We produced linear regression models for six VOCMs with sex, age, race, and tobacco user group as predictor variables. Creatinine-ratioed levels of VOCMs from exposure to acrolein, crotonaldehyde, isoprene, acrylonitrile, and 1,3-butadiene were significantly higher in smokers than in never users. Small differences of VOCM levels among exclusive e-cigarette users and smokeless users were observed when compared to never users. Smokers showed higher VOCM concentrations than e-cigarette, smokeless, and never users. Urinary VOC metabolites are useful biomarkers of exposure to harmful VOCs.