RESUMEN
Drug local delivery system that directly supply anti-cancer drugs to the tumor microenvironment (TME) results in excellent tumor control and minimizes side effects associated with the anti-cancer drugs. Immune checkpoint inhibitors (ICIs) have been the mainstay of cancer immunotherapy. However, the systemic administration of ICIs is accompanied by considerable immunotherapy-related toxicity. To explore whether an anti-PD-L1 antibody administered locally via a sustained-release gel-forming carrier retains its effective anticancer function while causing fewer colitis-like side effects, CT, a previously reported depot system, was used to locally deliver an anti-PD-L1 antibody together with curcumin to the TME in bladder cancer-bearing ulcerative colitis model mice. We showed that CT-mediated intratumoral coinjection of an anti-PD-L1 antibody and curcumin enabled sustained release of both the loaded anti-PD-L1 antibody and curcumin, which contributed to substantial anticancer effects with negligible side effects on the colons of the UC model mice. However, although the anti-PD-L1 antibody administered systemically synergized with the CT-mediated intratumoral delivery of curcumin in inhibiting tumour growth, colitis was significantly worsened by intraperitoneal administration of anti-PD-L1 antibody. These findings suggested that CT is a promising agent for the local delivery of anticancer drugs, as it can allow effective anticancer functions to be retained while sharply reducing the adverse side effects associated with the systemic administration of these drugs.
Asunto(s)
Antígeno B7-H1 , Curcumina , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Neoplasias de la Vejiga Urinaria , Animales , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/terapia , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Curcumina/uso terapéutico , Curcumina/administración & dosificación , Ratones , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Humanos , Línea Celular Tumoral , Femenino , Colitis/inducido químicamente , Colitis/inmunología , Colitis/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Sistemas de Liberación de Medicamentos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/uso terapéutico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inmunologíaRESUMEN
Immune checkpoint inhibitors (ICIs) are an integral antitumor therapy for many malignancies. Most patients show very good tolerability to ICIs; however, serious immune-related adverse events (irAEs) with ICIs have been well documented and prevent some patients from continuing ICIs or even become the direct cause of patient death. Cytopenia is a rare irAE but can be life-threatening. Here, we present the case of a 66-year-old male patient with metastatic lung adenocarcinoma who received two doses of chemotherapy + PD-1 antibody tislelizumab and developed pancytopenia after each dose. Although the first episode of pancytopenia resolved with a treatment regimen of granulocyte colony-stimulating factor (G-CSF), thrombopoietin (TPO), and red blood cell and platelet transfusion, the second episode showed extreme resistance to these treatments and improved only after the administration of steroids. His second pancytopenia episode resolved after a long course of treatment with methylprednisolone, G-CSF, TPO, hetrombopag and multiple red blood cell and platelet transfusions. However, he suffered a cerebral infarction when his platelet count was in the normal range and gradually recovered 1 week later. This case highlights the importance of the early recognition and management of hematological irAEs.
Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Pancitopenia , Masculino , Humanos , Anciano , Pancitopenia/inducido químicamente , Pancitopenia/diagnóstico , Adenocarcinoma del Pulmón/complicaciones , Adenocarcinoma del Pulmón/tratamiento farmacológico , Factor Estimulante de Colonias de Granulocitos , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Infarto CerebralRESUMEN
Curcumin is potentially therapeutic for malignant diseases. The mechanisms of this effect might involve a combination of antioxidant, immunomodulatory, proapoptotic, and antiangiogenic activities. However, the exact mechanisms are not fully understood. In the present study, we provided evidences that curcumin suppressed the expression of enhancer of zeste homolog 2 (EZH2) in lung cancer cells both transcriptionally and post-transcriptionally. Curcumin inhibited the expression of EZH2 through microRNA (miR)-let 7c and miR-101. Curcumin decreased the expression of NOTCH1 through the inhibition of EZH2. There was a reciprocal regulation between EZH2 and NOTCH1 in lung cancer cells. These observations suggest that curcumin inhibits lung cancer growth and metastasis at least partly through the inhibition of EZH2 and NOTCH1.
Asunto(s)
Antineoplásicos/farmacología , Curcumina/farmacología , Proteína Potenciadora del Homólogo Zeste 2/biosíntesis , Neoplasias Pulmonares/patología , Receptor Notch1/biosíntesis , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/metabolismoRESUMEN
The dual-luciferase reporter assay is widely used for microRNA target identification and the functional validation of predicted targets. To determine whether curcumin regulates expression of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) by targeting its 3'untranslated region (3'UTR), two luciferase reporter systems containing exactly the same sequence of the EZH2 3'UTR were used to perform dual-luciferase reporter assays. Surprisingly, there were certain discrepancies between the luciferase activities derived from these two reporter constructs. We normalized luciferase activity to an internal control to determine the amount of the reporter construct successfully transfected into cells, induced a transcriptional block with flavopiridol, quantified renilla luciferase mRNA levels, and compared the absolute luciferase activity among the different groups. The results suggested that curcumin promoted the transcription of the luciferase genes located downstream of the simian vacuolating virus 40 (SV40) early enhancer/promoter, but not those located downstream of the human cytomegalovirus (CMV) immediate-early or the herpes simplex virus thymidine kinase (HSV-TK) promoters. These results explain the discrepancies between the two luciferase reporter systems. The current study underscores the importance of taking caution when interpreting the results of dual-luciferase reporter assays and provides strategies to overcome the potential pitfall accompanying dual-luciferase reporter systems.