Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zool Res ; 42(6): 800-824, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34755500

RESUMEN

Autism spectrum disorder (ASD) is typically characterized by common deficits in social skills and repetitive/stereotyped behaviors. It is widely accepted that genetic and environmental factors solely or in combination cause ASD. However, the underlying pathogenic mechanism is unclear due to its highly heterogeneous nature. To better understand the pathogenesis of ASD, various animal models have been generated, which can be generally divided into genetic, environment-induced, and idiopathic animal models. In this review, we summarize the common animals used for ASD study and then discuss the applications, clinical insights, as well as challenges and prospects of current ASD animal models.


Asunto(s)
Trastorno del Espectro Autista , Modelos Animales de Enfermedad , Animales , Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/genética , Humanos
2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(6): 1209-12, 2008 Jun.
Artículo en Zh | MEDLINE | ID: mdl-18800689

RESUMEN

Wavelength conversion exploiting cascaded second harmonic and difference frequency generation (c(SHG/DFG)) in periodically polarized LiNbO3 (PPLN) waveguides was experimentally researched. While wavelength converter was pumped with a pulsed wave, the pump pulse can be used to carry the information and wavelength conversion occurs between the pump wave and converted wave, thus wavelength conversion transferring the information from the pump wave to the converted waves includes two processes of second order nonlinear reaction: the first wavelength conversion from pump wave to SH wave occurs with SHG process, and the second wavelength conversion from SH wave to converted wave occurs with DFG process. In the first process the group velocities mismatching (GVM) for pulses at different wavelengths due to material property load the temporal walk-off between pump pulse and SH pulse located in the 1.5 microm band and in the 0.8 microm band, respectively, so that SH pulse slowly propagates compared with pump pulse, and SH pulse width is broadened along propagation length. As a result, in the second process the converted DF pulse generates waveform distortion owing to the broadening of SH pulse in the first process. Both the waveform and the spectrum of converted pulse in our experimental results testify to the fact that SH pulse possesses a narrow spectral width, which is consistent with a long SH pulse, and the spectral width of converted DF pulse is compressed but its temporal width is broadened correspondingly. Therefore the influence of walk-off between pulses demonstrates that the pulsed pumping wavelength conversion is disadvantageous to the transparence of the data format. However, pulsed pumping wavelength conversion also presents great potential that can be applied in future optical networks. Tunable wavelength conversion can be easily implemented by changing the wavelength of control CW, and single-to-multiple channel wavelength conversion can be realized by increasing the number of the CW lasing pump channels. This is very important and it enhances the flexibility in the management of the multi-channel WDM network. Finally, a tunable and single-to-dual channel wavelength converter based on the scheme of pulsed pumping wavelength conversion achieved by our experiment setup, and two channel converted pulses simultaneously replicate the bit rate carried on pump pulses. It is pointed out that the quality such the signal-to-noise ratio of converted pulse is affected by spectral width of control CW.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA