Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ergonomics ; : 1-14, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046887

RESUMEN

This study examines the impact of Human-Drone Interaction (HDI) modalities on construction workers' safety and balance control within virtual environments. Utilising virtual reality (VR) simulations, the study explored how gesture and speech-based communications influence workers' physical postures and balance, contrasting these modalities with a non-interactive control group. One hundred participants were recruited, and their movements and balance control were tracked using motion sensors while they interacted with virtual drones through either gesture, speech, or without communication. Results showed that interactive modalities significantly improved balance control and reduced the risk of falls, suggesting that advanced HDI can enhance safety on construction sites. However, speech-based interaction increased cognitive workload, highlighting a trade-off between physical safety and mental strain. These findings underscore the potential of integrating intuitive communication methods into construction operations, although further research is needed to optimise these interactions for long-term use and in diverse noise environments.


This study examines the impact of Human-Drone Interaction (HDI) modalities on construction workers' safety and balance control within virtual environments with a human subject experiment. Results showed that interactive modalities significantly improved balance control and reduced the risk of falls.

2.
Environ Res ; 237(Pt 1): 116917, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37611784

RESUMEN

Due to poor management and the lack of environmental awareness, lots of masks (an emerging form of plastic pollution) are discarded into the environment during the COVID-19, thereby jeopardizing the health of humans and the environment. Our study introduces a novel perspective by examining the impact of physical damage on the microbial composition of masks in the water environment. We focus on the variations in biofilm formation on each layer of both damaged and undamaged masks, which allows us to understand more about the biofilm on each layer and the significant changes that occur when masks are physically damaged. Research has shown that the community structure of microorganisms on discarded masks can be altered in just ten days, showing an evolution from undifferentiated pioneer colonizing species ("non-picky") to adaptive dominant species ("picky"). Especially, considering that discarded masks were inevitably damaged, we found that the biomass on the damaged samples is 1.62-2.38 times higher than that of the undamaged samples, respectively. Moreover, the microbial community structure on it was also significantly different. Genes involved in biogeochemical cycles of nutrients are more enriched in damaged masks. When damaged, the colonization process and community structure in the middle layer significantly differ from those in the inner and outer layers and even enrich more pathogenic bacteria. Based on the above, it is evident that the environmental risk of masks cannot be assessed as a whole, and the middle layer carries a higher risk.

3.
Dalton Trans ; 53(20): 8732-8739, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38712507

RESUMEN

Interfacial engineering emerges as a potent strategy for regulating the catalytic reactivity of metal phosphides. Developing a facile and cost-effective method to construct bifunctional metal phosphides for highly efficient electrochemical overall water splitting remains an essential and challenging issue. Here, a multiphase transition metal phosphide is constructed through the direct phosphorization of a Ni-Co metal-organic framework grown on nickel foam (Ni-Co-MOF/NF), which is prepared by utilizing nickel foam as conductive substrate and nickel source. The resulting transition metal phosphide manifests a pillar-layered morphology, wherein CoP, Ni2P, and Ni5P4 nanoparticles are embedded within each carbon sheet and these carbon sheets assemble into a pillar-shaped structure on the nickel foam (Ni2P-Ni5P4-CoP-C/NF). The heterogeneous Ni2P-Ni5P4-CoP-C/NF with multiple interfaces serves as a highly efficient bifunctional electrocatalyst with overpotentials of -100 mV and 293 mV in the hydrogen evolution reaction and oxygen evolution reaction, respectively, at 50 mA cm-2 in alkaline media. This superior catalytic performance should mainly be ascribed to its enriched active centers and multiphase synergy. When directly applied for alkaline overall water splitting, the Ni2P-Ni5P4-CoP-C/NF couple demonstrates satisfactory activity (1.55 V @10 mA cm-2) along with sustained durability over 18 hours. This method brings fresh enlightenment to the economical and controllable preparation of multi-metal phosphides for energy conversion.

4.
Biomed Pharmacother ; 171: 116112, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171246

RESUMEN

Ferroptosis is a newly identified form of non-apoptotic programmed cell death, characterized by the iron-dependent accumulation of lethal lipid reactive oxygen species (ROS) and peroxidation of membrane polyunsaturated fatty acid phospholipids (PUFA-PLs). Ferroptosis is unique among other cell death modalities in many aspects. It is initiated by excessive oxidative damage due to iron overload and lipid peroxidation and compromised antioxidant defense systems, including the system Xc-/ glutathione (GSH)/glutathione peroxidase 4 (GPX4) pathway and the GPX4-independent pathways. In the past ten years, ferroptosis was reported to play a critical role in the pathogenesis of various cardiovascular diseases, e.g., atherosclerosis (AS), arrhythmia, heart failure, diabetic cardiomyopathy, and myocardial ischemia-reperfusion injury. Studies have identified dysfunctional iron metabolism and abnormal expression profiles of ferroptosis-related factors, including iron, GSH, GPX4, ferroportin (FPN), and SLC7A11 (xCT), as critical indicators for atherogenesis. Moreover, ferroptosis in plaque cells, i.e., vascular endothelial cell (VEC), macrophage, and vascular smooth muscle cell (VSMC), positively correlate with atherosclerotic plaque development. Many macromolecules, drugs, Chinese herbs, and food extracts can inhibit the atherogenic process by suppressing the ferroptosis of plaque cells. In contrast, some ferroptosis inducers have significant pro-atherogenic effects. However, the mechanisms through which ferroptosis affects the progression of AS still need to be well-known. This review summarizes the molecular mechanisms of ferroptosis and their emerging role in AS, aimed at providing novel, promising druggable targets for anti-AS therapy.


Asunto(s)
Aterosclerosis , Ferroptosis , Hiperaldosteronismo , Placa Aterosclerótica , Humanos , Glutatión , Hierro , Peroxidación de Lípido , Especies Reactivas de Oxígeno
5.
Int J Biol Macromol ; 253(Pt 4): 126953, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37734516

RESUMEN

Long intergenic non-coding RNA 00657 (linc00657) is involved in various diseases, whereas its role in atherosclerosis (AS) development remains inconclusive. This study was designed to investigate the effects and underlying mechanisms of linc00657 in atherogenesis. The results showed that ox-LDL treatment significantly induced pyroptosis in human THP-1-derived macrophages. The secretion levels of LDH and pro-inflammatory factors were markedly enhanced, and the integrity of plasma membranes was disrupted in ox-LDL-treated THP-1-derived macrophages. These effects were significantly compensated after transfection with linc00657 siRNA and became more evident by linc00657 overexpression. Moreover, the effects of linc00657 overexpression on pyroptosis of THP-1-derived macrophages can also be robustly reversed by TXNIP knockdown or miR-106b-5p mimics transfection. Mechanistically, linc00657 enhanced TXNIP expression by competitively binding to miR-106b-5p, promoting NLRP3 inflammasome activation. Finally, we found that linc00657 overexpression significantly increased the expression of pyroptosis-related factors and decreased miR-106b-5p level in the aorta of high-fat-diet-fed apoE-/- mice. Furthermore, linc00657 up-regulation enlarged the plaque area, exacerbated plasma lipid profile, and increased pro-inflammatory cytokines levels in the serum, effects that were reversed by injection of miR-106b-5p agomir. This evidence indicated that linc00657 stimulated macrophage pyroptosis and aggravated the progression of AS via the miR-106b-5p/TXNIP/NLRP3 pathway.


Asunto(s)
Aterosclerosis , MicroARNs , Humanos , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/genética , Macrófagos/metabolismo , Aterosclerosis/metabolismo , Proteínas Portadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA