Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Plant Biotechnol J ; 22(6): 1681-1702, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38294334

RESUMEN

Alternative splicing (AS), an important post-transcriptional regulation mechanism in eukaryotes, can significantly increase transcript diversity and contribute to gene expression regulation and many other complicated developmental processes. While plant gene AS events are well described, few studies have investigated the comprehensive regulation machinery of plant AS. Here, we use multi-omics to analyse peanut AS events. Using long-read isoform sequencing, 146 464 full-length non-chimeric transcripts were obtained, resulting in annotation corrections for 1782 genes and the identification of 4653 new loci. Using Iso-Seq RNA sequences, 271 776 unique splice junctions were identified, 82.49% of which were supported by transcriptome data. We characterized 50 977 polyadenylation sites for 23 262 genes, 12 369 of which had alternative polyadenylation sites. AS allows differential regulation of the same gene by miRNAs at the isoform level coupled with polyadenylation. In addition, we identified many long non-coding RNAs and fusion transcripts. There is a suppressed effect of 6mA on AS and gene expression. By analysis of chromatin structures, the genes located in the boundaries of topologically associated domains, proximal chromosomal telomere regions, inter- or intra-chromosomal loops were found to have more unique splice isoforms, higher expression, lower 6mA and more transposable elements (TEs) in their gene bodies than the other genes, indicating that chromatin interaction, 6mA and TEs play important roles in AS and gene expression. These results greatly refine the peanut genome annotation and contribute to the study of gene expression and regulation in peanuts. This work also showed AS is associated with multiple strategies for gene regulation.


Asunto(s)
Empalme Alternativo , Arachis , Empalme Alternativo/genética , Arachis/genética , Arachis/metabolismo , Regulación de la Expresión Génica de las Plantas , Poliploidía , Metilación de ADN/genética , Poliadenilación/genética , Transcriptoma/genética
2.
Theor Appl Genet ; 137(3): 66, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438591

RESUMEN

KEY MESSAGE: Integrating GAB methods with high-throughput phenotyping, genome editing, and speed breeding hold great potential in designing future smart peanut cultivars to meet market and food supply demands. Cultivated peanut (Arachis hypogaea L.), a legume crop greatly valued for its nourishing food, cooking oil, and fodder, is extensively grown worldwide. Despite decades of classical breeding efforts, the actual on-farm yield of peanut remains below its potential productivity due to the complicated interplay of genotype, environment, and management factors, as well as their intricate interactions. Integrating modern genomics tools into crop breeding is necessary to fast-track breeding efficiency and rapid progress. When combined with speed breeding methods, this integration can substantially accelerate the breeding process, leading to faster access of improved varieties to farmers. Availability of high-quality reference genomes for wild diploid progenitors and cultivated peanuts has accelerated the process of gene/quantitative locus discovery, developing markers and genotyping assays as well as a few molecular breeding products with improved resistance and oil quality. The use of new breeding tools, e.g., genomic selection, haplotype-based breeding, speed breeding, high-throughput phenotyping, and genome editing, is probable to boost genetic gains in peanut. Moreover, renewed attention to efficient selection and exploitation of targeted genetic resources is also needed to design high-quality and high-yielding peanut cultivars with main adaptation attributes. In this context, the combination of genomics-assisted breeding (GAB), genome editing, and speed breeding hold great potential in designing future improved peanut cultivars to meet market and food supply demands.


Asunto(s)
Arachis , Fabaceae , Arachis/genética , Fitomejoramiento , Genómica , Verduras
3.
Plant Biotechnol J ; 21(11): 2173-2181, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37523347

RESUMEN

Peanut (Arachis) is a key oil and protein crop worldwide with large genome. The genomes of diploid and tetraploid peanuts have been sequenced, which were compared to decipher their genome structures, evolutionary, and life secrets. Genome sequencing efforts showed that different cultivars, although Bt homeologs being more privileged in gene retention and gene expression. This subgenome bias, extended to sequence variation and point mutation, might be related to the long terminal repeat (LTR) explosions after tetraploidization, especially in At subgenomes. Except that, whole-genome sequences revealed many important genes, for example, fatty acids and triacylglycerols pathway, NBS-LRR (nucleotide-binding site-leucine-rich repeats), and seed size decision genes, were enriched after recursive polyploidization. Each ancestral polyploidy, with old ones having occurred hundreds of thousand years ago, has thousands of duplicated genes in extant genomes, contributing to genetic novelty. Notably, although full genome sequences are available, the actual At subgenome ancestor has still been elusive, highlighted with new debate about peanut origin. Although being an orphan crop lagging behind other crops in genomic resources, the genome sequencing achievement has laid a solid foundation for advancing crop enhancement and system biology research of peanut.


Asunto(s)
Arachis , Genoma de Planta , Arachis/genética , Genoma de Planta/genética , Domesticación , Mapeo Cromosómico , Evolución Biológica , Poliploidía
4.
Crit Rev Biotechnol ; 43(7): 1035-1062, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35968922

RESUMEN

Climate change gives rise to numerous environmental stresses, including soil salinity. Salinity/salt stress is the second biggest abiotic factor affecting agricultural productivity worldwide by damaging numerous physiological, biochemical, and molecular processes. In particular, salinity affects plant growth, development, and productivity. Salinity responses include modulation of ion homeostasis, antioxidant defense system induction, and biosynthesis of numerous phytohormones and osmoprotectants to protect plants from osmotic stress by decreasing ion toxicity and augmented reactive oxygen species scavenging. As most crop plants are sensitive to salinity, improving salt tolerance is crucial in sustaining global agricultural productivity. In response to salinity, plants trigger stress-related genes, proteins, and the accumulation of metabolites to cope with the adverse consequence of salinity. Therefore, this review presents an overview of salinity stress in crop plants. We highlight advances in modern biotechnological tools, such as omics (genomics, transcriptomics, proteomics, and metabolomics) approaches and different genome editing tools (ZFN, TALEN, and CRISPR/Cas system) for improving salinity tolerance in plants and accomplish the goal of "zero hunger," a worldwide sustainable development goal proposed by the FAO.

5.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902052

RESUMEN

Peanut (Arachis hypogaea L.) is an important food and feed crop worldwide and is affected by various biotic and abiotic stresses. The cellular ATP levels decrease significantly during stress as ATP molecules move to extracellular spaces, resulting in increased ROS production and cell apoptosis. Apyrases (APYs) are the nucleoside phosphatase (NPTs) superfamily members and play an important role in regulating cellular ATP levels under stress. We identified 17 APY homologs in A. hypogaea (AhAPYs), and their phylogenetic relationships, conserved motifs, putative miRNAs targeting different AhAPYs, cis-regulatory elements, etc., were studied in detail. The transcriptome expression data were used to observe the expression patterns in different tissues and under stress conditions. We found that the AhAPY2-1 gene showed abundant expression in the pericarp. As the pericarp is a key defense organ against environmental stress and promoters are the key elements regulating gene expression, we functionally characterized the AhAPY2-1 promoter for its possible use in future breeding programs. The functional characterization of AhAPY2-1P in transgenic Arabidopsis plants showed that it effectively regulated GUS gene expression in the pericarp. GUS expression was also detected in flowers of transgenic Arabidopsis plants. Overall, these results strongly suggest that APYs are an important future research subject for peanut and other crops, and AhPAY2-1P can be used to drive the resistance-related genes in a pericarp-specific manner to enhance the defensive abilities of the pericarp.


Asunto(s)
Arabidopsis , Fabaceae , Arachis/genética , Apirasa/genética , Filogenia , Arabidopsis/genética , Fitomejoramiento , Fabaceae/genética , Plantas Modificadas Genéticamente , Adenosina Trifosfato , Regulación de la Expresión Génica de las Plantas
6.
Mol Biol Rep ; 49(12): 11503-11514, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36097128

RESUMEN

BACKGROUND: Tobacco is an important economic crop, but the quality and yield have been severely impaired by bacterial wilt disease (BWD) caused by Ralstonia solanacearum. METHODS AND RESULTS: Here, we describe a transgenic approach to prevent BWD in tobacco plants. A new root-specific promoter of an NtR12 gene was successfully cloned. The NtR12 promoter drove GUS reporter gene expression to a high level in roots but to less extent in stems, and no significant expression was detected in leaves. The Ribosome-inactivating proteins (RIP) gene from Momordica charantia was also cloned, and its ability to inhibit Ralstonia solanacearum was evaluated using RIP protein produced by the prokaryotic expression system. The RIP gene was constructed downstream of the NtR12 promoter and transformed into the tobacco cultivar "Cuibi No. 1" (CB-1), resulting in many descendants. The resistance against BWD was significantly improved in transgenic tobacco lines expressing NtR12::RIP. CONCLUSION: This study confirms that the RIP gene confers resistance to BWD and the NtR12 as a new promoter for its specific expression in root and stem. Our findings pave a novel avenue for transgenic engineering to prevent the harmful impact of diseases and pests in roots and stems.


Asunto(s)
Nicotiana , Ralstonia solanacearum , Nicotiana/metabolismo , Proteínas Inactivadoras de Ribosomas/genética , Proteínas Inactivadoras de Ribosomas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo , Regiones Promotoras Genéticas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética
7.
BMC Microbiol ; 21(1): 118, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33874906

RESUMEN

BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum species complex is an important soil-borne disease worldwide that affects more than 450 plant species, including peanut, leading to great yield and quality losses. However, there are no effective measures to control bacterial wilt. The reason is the lack of research on the pathogenic mechanism of bacterial wilt. RESULTS: Here, we report the complete genome of a toxic Ralstonia solanacearum species complex strain, Rs-P.362200, a peanut pathogen, with a total genome size of 5.86 Mb, encoding 5056 genes and the average G + C content of 67%. Among the coding genes, 75 type III effector proteins and 12 pseudogenes were predicted. Phylogenetic analysis of 41 strains including Rs-P.362200 shows that genetic distance mainly depended on geographic origins then phylotypes and host species, which associated with the complexity of the strain. The distribution and numbers of effectors and other virulence factors changed among different strains. Comparative genomic analysis showed that 29 families of 113 genes were unique to this strain compared with the other four pathogenic strains. Through the analysis of specific genes, two homologous genes (gene ID: 2_657 and 3_83), encoding virulence protein (such as RipP1) may be associated with the host range of the Rs-P.362200 strain. It was found that the bacteria contained 30 pathogenicity islands and 6 prophages containing 378 genes, 7 effectors and 363 genes, 8 effectors, respectively, which may be related to the mechanism of horizontal gene transfer and pathogenicity evaluation. Although the hosts of HA4-1 and Rs-P.362200 strains are the same, they have specific genes to their own genomes. The number of genomic islands and prophages in HA4-1 genome is more than that in Rs-P.36220, indicating a rapid change of the bacterial wilt pathogens. CONCLUSION: The complete genome sequence analysis of peanut bacterial wilt pathogen enhanced the information of R. solanacearum genome. This research lays a theoretical foundation for future research on the interaction between Ralstonia solanacearum and peanut.


Asunto(s)
Genoma Bacteriano/genética , Ralstonia solanacearum/genética , Arachis/microbiología , Composición de Base/genética , Islas Genómicas/genética , Filogenia , Ralstonia solanacearum/química , Ralstonia solanacearum/clasificación
8.
Plant Biotechnol J ; 18(11): 2187-2200, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32167667

RESUMEN

Spatio-temporal and developmental stage-specific transcriptome analysis plays a crucial role in systems biology-based improvement of any species. In this context, we report here the Arachis hypogaea gene expression atlas (AhGEA) for the world's widest cultivated subsp. fastigiata based on RNA-seq data using 20 diverse tissues across five key developmental stages. Approximately 480 million paired-end filtered reads were generated followed by identification of 81 901 transcripts from an early-maturing, high-yielding, drought-tolerant groundnut variety, ICGV 91114. Further, 57 344 genome-wide transcripts were identified with ≥1 FPKM across different tissues and stages. Our in-depth analysis of the global transcriptome sheds light into complex regulatory networks namely gravitropism and photomorphogenesis, seed development, allergens and oil biosynthesis in groundnut. Importantly, interesting insights into molecular basis of seed development and nodulation have immense potential for translational genomics research. We have also identified a set of stable expressing transcripts across the selected tissues, which could be utilized as internal controls in groundnut functional genomics studies. The AhGEA revealed potential transcripts associated with allergens, which upon appropriate validation could be deployed in the coming years to develop consumer-friendly groundnut varieties. Taken together, the AhGEA touches upon various important and key features of cultivated groundnut and provides a reference for further functional, comparative and translational genomics research for various economically important traits.


Asunto(s)
Arachis , Fabaceae , Arachis/genética , Genómica , Fenotipo , Semillas
9.
Theor Appl Genet ; 133(7): 2239-2257, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32285164

RESUMEN

KEY MESSAGE: Two novel resistant QTLs mapped and candidate genes identified for Aspergillus flavus resistance in cultivated peanut using SLAF-seq. Aflatoxin contamination in peanuts caused by Aspergillus flavus is a serious food safety issue for human health around the world. Host plant resistance to fungal infection and reduction in aflatoxin are crucial for mitigating this problem. Identification of the resistance-linked markers can be used in marker-assisted breeding for varietal development. Here we report construction of two high-density genetic linkage maps with 1975 SNP loci and 5022 SNP loci, respectively. Two consistent quantitative trait loci (QTL) were identified as qRAF-3-1 and qRAF-14-1, which located on chromosomes A03 and B04, respectively. QTL qRAF-3-1 was mapped within 1.67 cM and had more than 19% phenotypic variance explained (PVE), while qRAF-14-1 was located within 1.34 cM with 5.15% PVE. While comparing with the reference genome, the mapped QTLs, qRAF-3-1 and qRAF-14-1, were located within a physical distance of 1.44 Megabase pair (Mbp) and 2.22 Mbp, harboring 67 and 137 genes, respectively. Among the identified candidate genes, six genes with the same function were found within both QTLs regions. In addition, putative disease resistance RPP13-like protein 1 (RPP13), lipoxygenase (Lox), WRKY transcription factor (WRKY) and cytochrome P450 71B34 genes were also identified. Using microarray analysis, genes responded to A. flavus infection included coding for RPP13, pentatricopeptide repeat-containing-like protein, and Lox which may be possible candidate genes for resistance to A. flavus. The QTLs and candidate genes will further facilitate marker development and validation of genes for deployment in the molecular breeding programs against A. flavus in peanuts.


Asunto(s)
Arachis/genética , Aspergillus flavus/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple , Aflatoxinas/química , Arachis/microbiología , Mapeo Cromosómico , Biología Computacional , Ligamiento Genético , Marcadores Genéticos , Genotipo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo
10.
Theor Appl Genet ; 133(5): 1679-1702, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32328677

RESUMEN

KEY MESSAGE: Groundnut has entered now in post-genome era enriched with optimum genomic and genetic resources to facilitate faster trait dissection, gene discovery and accelerated genetic improvement for developing climate-smart varieties. Cultivated groundnut or peanut (Arachis hypogaea), an allopolyploid oilseed crop with a large and complex genome, is one of the most nutritious food. This crop is grown in more than 100 countries, and the low productivity has remained the biggest challenge in the semiarid tropics. Recently, the groundnut research community has witnessed fast progress and achieved several key milestones in genomics research including genome sequence assemblies of wild diploid progenitors, wild tetraploid and both the subspecies of cultivated tetraploids, resequencing of diverse germplasm lines, genome-wide transcriptome atlas and cost-effective high and low-density genotyping assays. These genomic resources have enabled high-resolution trait mapping by using germplasm diversity panels and multi-parent genetic populations leading to precise gene discovery and diagnostic marker development. Furthermore, development and deployment of diagnostic markers have facilitated screening early generation populations as well as marker-assisted backcrossing breeding leading to development and commercialization of some molecular breeding products in groundnut. Several new genomics applications/technologies such as genomic selection, speed breeding, mid-density genotyping assay and genome editing are in pipeline. The integration of these new technologies hold great promise for developing climate-smart, high yielding and more nutritious groundnut varieties in the post-genome era.


Asunto(s)
Fabaceae/crecimiento & desarrollo , Fabaceae/genética , Genoma de Planta , Genómica/métodos , Fitomejoramiento/normas , Plantas Modificadas Genéticamente/genética , Sitios de Carácter Cuantitativo , Genética de Población , Fenotipo , Plantas Modificadas Genéticamente/crecimiento & desarrollo
11.
BMC Genomics ; 20(1): 392, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31113378

RESUMEN

BACKGROUND: Peanut embryo development is a complex process involving a series of gene regulatory pathways and is easily affected by various elements in the soil. Calcium deficiency in the soil induces early embryo abortion in peanut, which provides an opportunity to determine the mechanism underlying this important event. MicroRNA (miRNA)-guided target gene regulation is vital to a wide variety of biological processes. However, whether miRNAs participate in peanut embryo abortion under calcium deficiency has yet to be explored. RESULTS: In this study, with the assistance of a recently established platform for genome sequences of wild peanut species, we analyzed small RNAs (sRNAs) in early peanut embryos. A total of 29 known and 132 potential novel miRNAs were discovered in 12 peanut-specific miRNA families. Among the identified miRNAs, 87 were differentially expressed during early embryo development under calcium deficiency and sufficiency conditions, and 117 target genes of the differentially expressed miRNAs were identified. Integrated analysis of miRNAs and transcriptome expression revealed 52 differentially expressed target genes of 20 miRNAs. The expression profiles for some differentially expressed targets by gene chip analysis were consistent with the transcriptome sequencing results. Together, our results demonstrate that seed/embryo development-related genes such as TCP3, AP2, EMB2750, and GRFs; cell division and proliferation-related genes such as HsfB4 and DIVARICATA; plant hormone signaling pathway-related genes such as CYP707A1 and CYP707A3, with which abscisic acid (ABA) is involved; and BR1, with which brassinosteroids (BRs) are involved, were actively modulated by miRNAs during early embryo development. CONCLUSIONS: Both a number of miRNAs and corresponding target genes likely playing key roles in the regulation of peanut embryo abortion under calcium deficiency were identified. These findings provide for the first time new insights into miRNA-mediated regulatory pathways involved in peanut embryo abortion under calcium deficiency.


Asunto(s)
Arachis/embriología , Arachis/genética , Calcio/fisiología , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Arachis/anatomía & histología , Arachis/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , ARN Mensajero/metabolismo , Semillas/anatomía & histología , Semillas/genética , Semillas/metabolismo
12.
J Exp Bot ; 70(19): 5407-5421, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31173088

RESUMEN

Bacterial wilt caused by Ralstonia solanacearum is a devastating disease affecting hundreds of plant species, yet the host factors remain poorly characterized. The leucine-rich repeat receptor-like kinase gene AhRLK1, characterized as CLAVATA1, was found to be up-regulated in peanut upon inoculation with R. solanacearum. The AhRLK1 protein was localized in the plasma membrane and cell wall. qPCR results showed AhRLK1 was induced in a susceptible variety but little changed in a resistant cultivar after inoculated with R. solanacearum. Hormones such as salicylic acid, abscisic acid, methyl jasmonate, and ethephon induced AhRLK1 expression. In contrast, AhRLK1 expression was down-regulated under cold and drought treatments. Transient overexpression of AhRLK1 led to a hypersensitive response (HR) in Nicotiana benthamiana. Furthermore, AhRLK1 overexpression in tobacco significantly increased the resistance to R. solanacearum. Besides, the transcripts of most representative defense responsive genes in HR and hormone signal pathways were significantly increased in the transgenic lines. EDS1 and PAD4 in the R gene signaling pathway were also up-regulated, but NDR1 was down-regulated. Accordingly, AhRLK1 may increase the defense response to R. solanacearum via HR and hormone defense signaling, in particular through the EDS1 pathway of R gene signaling. These results provide a new understanding of the CLAVATA1 function and will contribute to genetic enhancement of peanut.


Asunto(s)
Arachis/genética , Nicotiana/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Ralstonia solanacearum/fisiología , Arachis/metabolismo , Resistencia a la Enfermedad , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Nicotiana/genética
13.
Plant Biotechnol J ; 15(1): 39-55, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27311738

RESUMEN

Bacterial wilt caused by Ralstonia solanacearum is a ruinous soilborne disease affecting more than 450 plant species. Efficient control methods for this disease remain unavailable to date. This study characterized a novel nucleotide-binding site-leucine-rich repeat resistance gene AhRRS5 from peanut, which was up-regulated in both resistant and susceptible peanut cultivars in response to R. solanacearum. The product of AhRRS5 was localized in the nucleus. Furthermore, treatment with phytohormones such as salicylic acid (SA), abscisic acid (ABA), methyl jasmonate (MeJA) and ethephon (ET) increased the transcript level of AhRRS5 with diverse responses between resistant and susceptible peanuts. Abiotic stresses such as drought and cold conditions also changed AhRRS5 expression. Moreover, transient overexpression induced hypersensitive response in Nicotiana benthamiana. Overexpression of AhRRS5 significantly enhanced the resistance of heterogeneous tobacco to R. solanacearum, with diverse resistance levels in different transgenic lines. Several defence-responsive marker genes in hypersensitive response, including SA, JA and ET signals, were considerably up-regulated in the transgenic lines as compared with the wild type inoculated with R. solanacearum. Nonexpressor of pathogenesis-related gene 1 (NPR1) and non-race-specific disease resistance 1 were also up-regulated in response to the pathogen. These results indicate that AhRRS5 participates in the defence response to R. solanacearum through the crosstalk of multiple signalling pathways and the involvement of NPR1 and R gene signals for its resistance. This study may guide the resistance enhancement of peanut and other economic crops to bacterial wilt disease.


Asunto(s)
Arachis/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/genética , Nicotiana/genética , Nicotiana/microbiología , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/patogenicidad , Ácido Abscísico/farmacología , Acetatos/farmacología , Secuencia de Bases , Núcleo Celular/efectos de los fármacos , Frío , Ciclopentanos/farmacología , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/efectos de los fármacos , Vectores Genéticos , Compuestos Organofosforados/farmacología , Oxilipinas/farmacología , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/farmacología , Plantas Modificadas Genéticamente , Ácido Salicílico/farmacología , Alineación de Secuencia , Estrés Fisiológico , Factores de Transcripción/genética , Regulación hacia Arriba
14.
Plant Biotechnol J ; 14(2): 682-98, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26079063

RESUMEN

Calcium is a universal signal in the regulation of wide aspects in biology, but few are known about the function of calcium in the control of early embryo development. Ca(2+) deficiency in soil induces early embryo abortion in peanut, producing empty pods, which is a general problem; however, the underlying mechanism remains unclear. In this study, embryo abortion was characterized to be caused by apoptosis marked with cell wall degradation. Using a method of SSH cDNA libraries associated with library lift (SSHaLL), 62 differentially expressed genes were isolated from young peanut embryos. These genes were classified to be stress responses, catabolic process, carbohydrate and lipid metabolism, embryo morphogenesis, regulation, etc. The cell retardation with cell wall degradation was caused by up-regulated cell wall hydrolases and down-regulated cellular synthases genes. HsfA4a, which was characterized to be important to embryo development, was significantly down-regulated under Ca(2+) -deficient conditions from 15 days after pegging (DAP) to 30 DAP. Two AhCYP707A4 genes, encoding abscisic acid (ABA) 8'-hydroxylases, key enzymes for ABA catabolism, were up-regulated by 21-fold under Ca(2+) -deficient conditions upstream of HsfA4a, reducing the ABA level in early embryos. Over-expression of AhCYP707A4 in Nicotiana benthamiana showed a phenotype of low ABA content with high numbers of aborted embryos, small pods and less seeds, which confirms that AhCYP707A4 is a key player in regulation of Ca(2+) deficiency-induced embryo abortion via ABA-mediated apoptosis. The results elucidated the mechanism of low Ca(2+) -induced embryo abortion and described the method for other fields of study.


Asunto(s)
Apoptosis/efectos de los fármacos , Arachis/embriología , Calcio/farmacología , Biblioteca de Genes , Genes de Plantas , Hibridación de Ácido Nucleico/métodos , Semillas/citología , Estrés Fisiológico/efectos de los fármacos , Ácido Abscísico/metabolismo , Apoptosis/genética , Arachis/citología , Arachis/efectos de los fármacos , Arachis/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Anotación de Secuencia Molecular , Fenotipo , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/efectos de los fármacos , Estrés Fisiológico/genética , Nicotiana/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
15.
Plant Cell Rep ; 35(4): 757-69, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26849672

RESUMEN

KEY MESSAGE: A novel root-specific gene and its upstream promoter were cloned and characterized for potential application in root-specific expression of transgenes. The root is an important plant organ subjected to many biotic and abiotic stresses, such as infection by Ralstonia solanacearum. To isolate tobacco root-specific promoters for genetic applications, microarray screening was performed to identify genes highly and specifically expressed in the root. One root-specific gene encoding an extensin-like protein (NtREL1) was isolated, and its expression pattern was further characterized by both microarray analysis and reverse transcription-polymerase chain reaction. NtREL1 was highly expressed only in roots but not in any other organ. NtREL1 expression was affected by hormone treatment (salicylic acid, abscisic acid, and ethephon) as well as low temperature, drought, and R. solanacearum infection. A full-length 849 bp cDNA containing a 657-nucleotide open reading frame was cloned by Rapid Amplification of cDNA Ends. Subsequently, a fragment of 1,574 bp upstream of NtREL1 was isolated by flanking PCR and named pNtREL1. This promoter fragment contains TATA, GATA, and CAAT-boxes, the basic elements of a promoter, and six root-specific expression elements, namely OSE1, OSE2, ROOTMOTIFTAPOX1, SURECOREATSULTR11, P1BS, and WUSATAg. A construct containing the bacterial uidA reporter gene (ß-glucuronidase, GUS) driven by the pNtREL1 promoter was transformed into tobacco plants. GUS staining was only detected in the root, but not in leaves and stems. Additionally, transgenic tobacco plants containing peanut resveratrol synthase gene (AhRS) driven by the pNtREL1 promoter produced resveratrol only in the root. Thus, the pNtREL1 promoter can be used to direct root-specific expression of target genes to protect the root from stress or for biological studies.


Asunto(s)
Genes de Plantas , Nicotiana/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Regiones Promotoras Genéticas , Secuencia de Aminoácidos , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Glucuronidasa/metabolismo , Especificidad de Órganos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Resveratrol , Estilbenos/metabolismo , Transgenes
16.
J Integr Plant Biol ; 58(5): 452-65, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26178804

RESUMEN

Cultivated peanut is grown worldwide as rich-source of oil and protein. A broad genetic base is needed for cultivar improvement. The objectives of this study were to develop highly informative simple sequence repeat (SSR) markers and to assess the genetic diversity and population structure of peanut cultivars and breeding lines from different breeding programs in China, India and the US. A total of 111 SSR markers were selected for this study, resulting in a total of 472 alleles. The mean values of gene diversity and polymorphic information content (PIC) were 0.480 and 0.429, respectively. Country-wise analysis revealed that alleles per locus in three countries were similar. The mean gene diversity in the US, China and India was 0.363, 0.489 and 0.47 with an average PIC of 0.323, 0.43 and 0.412, respectively. Genetic analysis using the STRUCTURE divided these peanut lines into two populations (P1, P2), which was consistent with the dendrogram based on genetic distance (G1, G2) and the clustering of principal component analysis. The groupings were related to peanut market types and the geographic origin with a few admixtures. The results could be used by breeding programs to assess the genetic diversity of breeding materials to broaden the genetic base and for molecular genetics studies.


Asunto(s)
Arachis/genética , Cruzamiento , Variación Genética , Repeticiones de Microsatélite/genética , China , Análisis por Conglomerados , Análisis Factorial , Marcadores Genéticos , Genética de Población , India , Filogenia , Polimorfismo Genético , Análisis de Componente Principal , Estados Unidos
17.
J Fungi (Basel) ; 10(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276017

RESUMEN

The conidia produced by Fusarium oxysporum f. sp. cubense (Foc), the causative agent of Fusarium Wilt of Banana (FWB), play central roles in the disease cycle, as the pathogen lacks a sexual reproduction process. Until now, the molecular regulation network of asexual sporogenesis has not been clearly understood in Foc. Herein, we identified and functionally characterized thirteen (13) putative sporulation-responsive genes in Foc, namely FocmedA(a), FocmedA(b), abaA-L, FocflbA, FocflbB, FocflbC, FocflbD, FocstuA, FocveA, FocvelB, wetA-L, FocfluG and Foclae1. We demonstrated that FocmedA(a), abaA-L, wetA-L, FocflbA, FocflbD, FocstuA, FocveA and Foclae1 mediate conidiophore formation, whereas FocmedA(a) and abaA-L are important for phialide formation and conidiophore formation. The expression level of abaA-L was significantly decreased in the ΔFocmedA(a) mutant, and yeast one-hybrid and ChIP-qPCR analyses further confirmed that FocMedA(a) could bind to the promoter of abaA-L during micro- and macroconidiation. Moreover, the transcript abundance of the wetA-L gene was significantly reduced in the ΔabaA-L mutant, and it not only was found to function as an activator of micro- and macroconidium formation but also served as a repressor of chlamydospore production. In addition, the deletions of FocflbB, FocflbC, FocstuA and Foclae1 resulted in increased chlamydosporulation, whereas FocflbD and FocvelB gene deletions reduced chlamydosporulation. Furthermore, FocflbC, FocflbD, Foclae1 and FocmedA(a) were found to be important regulators for pathogenicity and fusaric acid synthesis in Foc. The present study therefore advances our understanding of the regulation pathways of the asexual development and functional interdependence of sporulation-responsive genes in Foc.

18.
Plant Physiol Biochem ; 201: 107857, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37437345

RESUMEN

Climate change significantly impacts crop production by inducing several abiotic and biotic stresses. The increasing world population, and their food and industrial demands require focused efforts to improve crop plants to ensure sustainable food production. Among various modern biotechnological tools, microRNAs (miRNAs) are one of the fascinating tools available for crop improvement. miRNAs belong to a class of small non-coding RNAs playing crucial roles in numerous biological processes. miRNAs regulate gene expression by post-transcriptional target mRNA degradation or by translation repression. Plant miRNAs have essential roles in plant development and various biotic and abiotic stress tolerance. In this review, we provide propelling evidence from previous studies conducted around miRNAs and provide a one-stop review of progress made for breeding stress-smart future crop plants. Specifically, we provide a summary of reported miRNAs and their target genes for improvement of plant growth and development, and abiotic and biotic stress tolerance. We also highlight miRNA-mediated engineering for crop improvement and sequence-based technologies available for the identification of miRNAs associated with stress tolerance and plant developmental events.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Fitomejoramiento , Plantas/genética , Biotecnología , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
19.
Plant Genome ; 16(1): e20279, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36366733

RESUMEN

Breeding crop plants with increased yield potential and improved tolerance to stressful environments is critical for global food security. Drought stress (DS) adversely affects agricultural productivity worldwide and is expected to rise in the coming years. Therefore, it is vital to understand the physiological, biochemical, molecular, and ecological mechanisms associated with DS. This review examines recent advances in plant responses to DS to expand our understanding of DS-associated mechanisms. Suboptimal water sources adversely affect crop growth and yields through physical impairments, physiological disturbances, biochemical modifications, and molecular adjustments. To control the devastating effect of DS in crop plants, it is important to understand its consequences, mechanisms, and the agronomic and genetic basis of DS for sustainable production. In addition to plant responses, we highlight several mitigation options such as omics approaches, transgenics breeding, genome editing, and biochemical to mechanical methods (foliar treatments, seed priming, and conventional agronomic practices). Further, we have also presented the scope of conventional and speed breeding platforms in helping to develop the drought-smart future crops. In short, we recommend incorporating several approaches, such as multi-omics, genome editing, speed breeding, and traditional mechanical strategies, to develop drought-smart cultivars to achieve the 'zero hunger' goal.


Asunto(s)
Sequías , Estrés Fisiológico , Estrés Fisiológico/genética , Fitomejoramiento , Productos Agrícolas/genética , Edición Génica
20.
Front Plant Sci ; 14: 1145624, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063183

RESUMEN

Cultivated peanut (Arachis hypogaea) is a leading protein and oil-providing crop and food source in many countries. At the same time, it is affected by a number of biotic and abiotic stresses. O-methyltransferases (OMTs) play important roles in secondary metabolism, biotic and abiotic stress tolerance. However, the OMT genes have not been comprehensively analyzed in peanut. In this study, we performed a genome-wide investigation of A. hypogaea OMT genes (AhOMTs). Gene structure, motifs distribution, phylogenetic history, genome collinearity and duplication of AhOMTs were studied in detail. Promoter cis-elements, protein-protein interactions, and micro-RNAs targeting AhOMTs were also predicted. We also comprehensively studied their expression in different tissues and under different stresses. We identified 116 OMT genes in the genome of cultivated peanut. Phylogenetically, AhOMTs were divided into three groups. Tandem and segmental duplication events played a role in the evolution of AhOMTs, and purifying selection pressure drove the duplication process. AhOMT promoters were enriched in several key cis-elements involved in growth and development, hormones, light, and defense-related activities. Micro-RNAs from 12 different families targeted 35 AhOMTs. GO enrichment analysis indicated that AhOMTs are highly enriched in transferase and catalytic activities, cellular metabolic and biosynthesis processes. Transcriptome datasets revealed that AhOMTs possessed varying expression levels in different tissues and under hormones, water, and temperature stress. Expression profiling based on qRT-PCR results also supported the transcriptome results. This study provides the theoretical basis for further work on the biological roles of AhOMT genes for developmental and stress responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA