Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Molecules ; 28(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36615269

RESUMEN

A novel COVID-19 vaccine (BriLife®) has been developed by the Israel Institute for Biological Research (IIBR) to prevent the spread of the SARS-CoV-2 virus throughout the population in Israel. One of the components in the vaccine formulation is tris(hydroxymethyl)aminomethane (tromethamine, TRIS), a buffering agent. TRIS is a commonly used excipient in various approved parenteral medicinal products, including the mRNA COVID-19 vaccines produced by Pfizer/BioNtech and Moderna. TRIS is a hydrophilic basic compound that does not contain any chromophores/fluorophores and hence cannot be retained and detected by reverse-phase liquid chromatography (RPLC)-ultraviolet (UV)/fluorescence methods. Among the few extant methods for TRIS determination, all exhibit a lack of selectivity and/or sensitivity and require laborious sample treatment. In this study, LC−mass spectrometry (MS) with its inherent selectivity and sensitivity in the multiple reaction monitoring (MRM) mode was utilized, for the first time, as an alternative method for TRIS quantitation. Extensive validation of the developed method demonstrated suitable specificity, linearity, precision, accuracy and robustness over the investigated concentration range (1.2−4.8 mg/mL). Specifically, the R2 of the standard curve was >0.999, the recovery was >92%, and the coefficient of variance (%CV) was <12% and <6% for repeatability and intermediate precision, respectively. Moreover, the method was validated in accordance with strict Good Manufacturing Practice (GMP) guidelines. The developed method provides valuable tools that pharmaceutical companies can use for TRIS quantitation in vaccines and other pharmaceutical products.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Trometamina/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Composición de Medicamentos , COVID-19/prevención & control , SARS-CoV-2 , Cromatografía Liquida
2.
Antimicrob Agents Chemother ; 65(8): e0042121, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-33972251

RESUMEN

Antitoxin is currently the only approved therapy for botulinum intoxications. The efficacy of antitoxin preparations is evaluated in animals. However, while in practice antitoxin is administered to patients only after symptom onset, in most animal studies, it is tested in relation to time postintoxication. This may be attributed to difficulties in quantitating early botulism symptoms in animals. In the current study, a novel system based on high-resolution monitoring of mouse activity on a running wheel was developed to allow evaluation of postsymptom antitoxin efficacy. The system enables automatic and remote monitoring of 48 mice simultaneously. Based on the nocturnal activity patterns of individual naive mice, two criteria were defined as the onset of symptoms. Postsymptom treatment with a human-normalized dose of antitoxin was fully protective in mice exposed to 4 50% lethal doses (LD50s) of botulinum neurotoxin serotype A (BoNT/A) and BoNT/B. Moreover, for the first time, a high protection rate was obtained in mice treated postsymptomatically, following a challenge with BoNT/E, the fastest-acting BoNT. The running wheel system was further modified to develop a mouse model for the evaluation of next-generation therapeutics for progressive botulism at time points where antitoxin is not effective. Exposure of mice to 0.3 LD50 of BoNT/A resulted in long-lasting paralysis and a reduction in running activity for 16 to 18 days. Antitoxin treatment was no longer effective when administered 72 h postintoxication, defining the time window to evaluate next-generation therapeutics. Altogether, the running wheel systems presented herein offer quantitative means to evaluate the efficacy of current and future antibotulinum drugs.


Asunto(s)
Antitoxinas , Toxinas Botulínicas Tipo A , Botulismo , Animales , Antitoxinas/uso terapéutico , Botulismo/diagnóstico , Botulismo/tratamiento farmacológico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Serogrupo
3.
Arch Toxicol ; 95(4): 1503-1516, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33569691

RESUMEN

The application of mass spectrometry (MS) to detect unique peptide markers has been widely employed as a means of identifying bacterial proteins. Botulinum neurotoxins (BoNTs) are bacterial proteins that cause the life-threatening disease botulism. BoNTs are divided into several antigenically distinct serotypes and several dozen subtypes. The toxins' molecular heterogeneity makes their detection highly challenging. In this study, we describe a new LC-MS/MS-based platform for the direct identification of proteins derived from various species and subspecies in a single assay, as exemplified by BoNTs. The platform employs a rational down-selection process through several steps based on a combination of bioinformatics, tryptic digestion, and LC-MS, each leads to the final panel of markers. This approach has been demonstrated for all 8 subtypes of botulinum serotype A (BoNT/A). Ab-independent and Ab-dependent assays were developed based on the identification of 4 rationally selected markers or a combination of some of them, which enables full selectivity coverage. The Ab-independent assay, which is highly simple and rapid, has a sample-to-result turnaround time of approximately 40 min and enables the identification of 500 MsLD50/mL (5 ng/mL) BoNT/A in complex environmental matrices. The Ab-dependent assay, which is based on toxin's specific enrichment, has a turnaround time of 100 min, but enables improved sensitivity (50 MsLD50/mL, 0.5 ng/mL). Both assays were verified and validated using various environmental samples. This approach can easily be expanded to other botulinum serotypes and exhibits the potential for even further extension as a highly multiplexed assay for protein-based toxins, viruses, and organisms.


Asunto(s)
Toxinas Botulínicas Tipo A/análisis , Cromatografía Liquida/métodos , Clostridium/metabolismo , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Animales , Toxinas Botulínicas Tipo A/aislamiento & purificación , Ratones , Péptidos/análisis
4.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34445283

RESUMEN

Botulinum neurotoxins (BoNTs) are the most poisonous substances in nature. Currently, the only therapy for botulism is antitoxin. This therapy suffers from several limitations and hence new therapeutic strategies are desired. One of the limitations in discovering BoNT inhibitors is the absence of an in vitro assay that correlates with toxin neutralization in vivo. In this work, a high-throughput screening assay for receptor-binding inhibitors against BoNT/A was developed. The assay is composed of two chimeric proteins: a receptor-simulating protein, consisting of the fourth luminal loop of synaptic vesicle protein 2C fused to glutathione-S-transferase, and a toxin-simulating protein, consisting of the receptor-binding domain of BoNT/A fused to beta-galactosidase. The assay was applied to screen the LOPAC1280 compound library. Seven selected compounds were evaluated in mice exposed to a lethal dose of BoNT/A. The compound aurintricarboxylic acid (ATA) conferred 92% protection, whereas significant delayed time to death (p < 0.005) was observed for three additional compounds. Remarkably, ATA was also fully protective in mice challenged with a lethal dose of BoNT/E, which also uses the SV2 receptor. This study demonstrates that receptor-binding inhibitors have the potential to serve as next generation therapeutics for botulism, and therefore the assay developed may facilitate discovery of new anti-BoNT countermeasures.


Asunto(s)
Ácido Aurintricarboxílico/farmacología , Toxinas Botulínicas Tipo A/toxicidad , Toxinas Botulínicas/toxicidad , Botulismo/tratamiento farmacológico , Botulismo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Botulismo/genética , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Ratones , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
5.
Molecules ; 26(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072087

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) global pandemic. The first step of viral infection is cell attachment, which is mediated by the binding of the SARS-CoV-2 receptor binding domain (RBD), part of the virus spike protein, to human angiotensin-converting enzyme 2 (ACE2). Therefore, drug repurposing to discover RBD-ACE2 binding inhibitors may provide a rapid and safe approach for COVID-19 therapy. Here, we describe the development of an in vitro RBD-ACE2 binding assay and its application to identify inhibitors of the interaction of the SARS-CoV-2 RBD to ACE2 by the high-throughput screening of two compound libraries (LOPAC®1280 and DiscoveryProbeTM). Three compounds, heparin sodium, aurintricarboxylic acid (ATA), and ellagic acid, were found to exert an effective binding inhibition, with IC50 values ranging from 0.6 to 5.5 µg/mL. A plaque reduction assay in Vero E6 cells infected with a SARS-CoV-2 surrogate virus confirmed the inhibition efficacy of heparin sodium and ATA. Molecular docking analysis located potential binding sites of these compounds in the RBD. In light of these findings, the screening system described herein can be applied to other drug libraries to discover potent SARS-CoV-2 inhibitors.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Descubrimiento de Drogas , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/genética , Animales , Antivirales/uso terapéutico , Ácido Aurintricarboxílico/farmacología , Ácido Aurintricarboxílico/uso terapéutico , COVID-19/virología , Chlorocebus aethiops , Ácido Elágico/farmacología , Ácido Elágico/uso terapéutico , Heparina/farmacología , Heparina/uso terapéutico , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Dominios Proteicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Internalización del Virus/efectos de los fármacos
6.
Artículo en Inglés | MEDLINE | ID: mdl-29437616

RESUMEN

Botulinum neurotoxins (BoNTs), the most poisonous substances known in nature, pose significant concern to health authorities. The only approved therapeutic for botulism is antitoxin. While administered to patients only after symptom onset, antitoxin efficacy is evaluated in animals mostly in relation to time postintoxication regardless of symptoms. This is most likely due to the difficulty in measuring early symptoms of botulism in animals. In this study, a rabbit spirometry model was developed to quantify early respiratory symptoms of type E botulism that were further used as a trigger for treatment. Impaired respiration, in the form of a reduced minute volume, was detected as early as 18.1 ± 2.9 h after intramuscular exposure to 2 rabbit 50% lethal doses (LD50) of BoNT serotype E (BoNT/E), preceding any visible symptoms. All rabbits treated with antitoxin immediately following symptom onset survived. Postsymptom antitoxin efficacy was further evaluated in relation to toxin and antitoxin dosages as well as delayed antitoxin administration. Our system enabled us to demonstrate, for the first time, full antitoxin protection of animals treated with antitoxin after the onset of objective and quantitative type E botulism symptoms. This model may be utilized to evaluate the efficacy of antitoxins for additional serotypes of BoNT as well as that of next-generation anti-BoNT drugs that enter affected cells and act when antitoxin is no longer effective.


Asunto(s)
Antitoxinas/uso terapéutico , Botulismo/tratamiento farmacológico , Espirometría/métodos , Animales , Conejos , Serogrupo
7.
J Med Genet ; 54(5): 338-345, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28007939

RESUMEN

BACKGROUND: Haemophilia B is caused by genetic aberrations in the F9 gene. The majority of these are non-synonymous mutations that alter the primary structure of blood coagulation factor IX (FIX). However, a synonymous mutation c.459G>A (Val107Val) was clinically reported to result in mild haemophilia B (FIX coagulant activity 15%-20% of normal). The F9 mRNA of these patients showed no skipping or retention of introns and/or change in mRNA levels, suggesting that mRNA integrity does not contribute to the origin of the disease in affected individuals. The aim of this study is to elucidate the molecular mechanisms that can explain disease manifestations in patients with this synonymous mutation. METHODS: We analyse the molecular mechanisms underlying the FIX deficiency through in silico analysis and reproducing the c.459G>A (Val107Val) mutation in stable cell lines. Conformation and non-conformation sensitive antibodies, limited trypsin digestion, activity assays for FIX, interaction with other proteins and post-translation modifications were used to evaluate the biophysical and biochemical consequences of the synonymous mutation. RESULTS: The Val107Val synonymous mutation in F9 was found to significantly diminish FIX expression. Our results suggest that this mutation slows FIX translation and affects its conformation resulting in decreased extracellular protein level. The altered conformation did not change the specific activity of the mutated protein. CONCLUSIONS: The pathogenic basis for one synonymous mutation (Val107Val) in the F9 gene associated with haemophilia B was determined. A mechanistic understanding of this synonymous variant yields potential for guiding and developing future therapeutic treatments.


Asunto(s)
Factor IX/química , Factor IX/genética , Hemofilia B/genética , Mutación Silenciosa/genética , Línea Celular Tumoral , Codón/genética , Factor IX/metabolismo , Factor VIIIa/química , Células HEK293 , Humanos , Proteínas Mutantes/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional , Estabilidad del ARN/genética , ARN Mensajero/química , ARN Mensajero/genética , Termodinámica
8.
Anal Biochem ; 528: 34-37, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28450105

RESUMEN

Botulinum neurotoxins (BoNTs) are the most toxic proteins in nature. Endopeptidase-mass-spectrometry (Endopep-MS) is used as a specific and rapid in-vitro assay to detect BoNTs. In this assay, immunocaptured toxin cleaves a serotype-specific-peptide-substrate, and the cleavage products are then detected by MS. Here we describe the design of a new peptide substrate for improved detection of BoNT type A (BoNT/A). Our strategy was based on reported BoNT/A-SNAP-25 interactions integrated with analysis method efficiency considerations. Integration of the newly designed substrate led to a 10-fold increase in the assay sensitivity both in buffer and in clinically relevant samples.


Asunto(s)
Toxinas Botulínicas Tipo A/análisis , Espectrometría de Masas/métodos , Péptidos/análisis , Proteína 25 Asociada a Sinaptosomas/química , Secuencia de Aminoácidos , Toxinas Botulínicas Tipo A/inmunología , Endopeptidasas/metabolismo , Humanos , Péptidos/química , Unión Proteica
9.
Anal Bioanal Chem ; 408(19): 5179-88, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27236318

RESUMEN

The recent development of a homogeneous time-resolved Förster resonance energy transfer (TR-FRET) immunoassay enables one-step, rapid (minutes), and direct detection compared to the multistep, time-consuming (hours), heterogeneous ELISA-type immunoassays. The use of the time-resolved effect of a donor lanthanide complex with a delay time of microseconds and large Stokes shift enables the separation of positive signals from the background autofluorescence of the sample. However, this study shows that the sample matrices directly interfere with donor fluorescence and that interference cannot be eliminated by time-resolved settings alone. Moreover, the reduction in donor emission did not appear to be equivalent to the reduction in acceptor emission, resulting in incorrect FRET signal measurements. To overcome this limitation, an internal standard approach was developed using an isotype control antibody. This new approach was used to develop TR-FRET assays for rapid detection (15-30 min) of Bacillus anthracis spores and botulinum toxin (type E) in beverages, which are major concerns in bioterrorism involving deliberate food contamination. Additionally, we demonstrate the detection of B. anthracis-secreted protective antigen (PA) and the Yersinia pestis-secreted markers F1 and LcrV in blood cultures, which are early markers of bacteremia in infected hosts following a possible bioterror attack. The use of an internal standard enables the calculation of correct ΔF values without the need for an external standard. Thus, the use of the internal standard approach in homogeneous immunoassays facilitates the examination of any sample regardless of its origin, and therefore expands the applicability of TR-FRET assays for complex matrices.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Toxinas Bacterianas/análisis , Toxinas Bacterianas/normas , Técnicas de Tipificación Bacteriana/normas , Fluoroinmunoensayo/normas , Pruebas de Toxicidad/normas , Estándares de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
Clin Infect Dis ; 61(12): e58-61, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26420800

RESUMEN

Botulinum toxin was detected in patient serum using Endopeptidase-mass-spectrometry assay, although all conventional tests provided negative results. Antitoxin was administered, resulting in patient improvement. Implementing this highly sensitive and rapid assay will improve preparedness for foodborne botulism and deliberate exposure.


Asunto(s)
Botulismo/diagnóstico , Endopeptidasas/sangre , Espectrometría de Masas/métodos , Antitoxinas/administración & dosificación , Botulismo/terapia , Diagnóstico Precoz , Humanos , Lactante , Masculino , Suero/química , Factores de Tiempo , Resultado del Tratamiento
11.
Anal Biochem ; 473: 7-10, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25277815

RESUMEN

Botulinum neurotoxins (BoNTs) are the most toxic proteins in nature. Rapid and sensitive detection of BoNTs is achieved by the endopeptidase-mass spectrometry (Endopep-MS) assay. In this assay, BoNT cleaves a specific peptide substrate and the cleaved products are analyzed by MS. Here we describe the design of a new peptide substrate for improved detection of BoNT type B (BoNT/B) in the Endopep-MS assay. Our strategy was based on reported BoNT/B-substrate interactions integrated with analysis method efficiency considerations. Incorporation of the new peptide led to a 5-fold increased sensitivity of the assay both in buffer and in a clinically relevant human spiked serum.


Asunto(s)
Técnicas Biosensibles/métodos , Toxinas Botulínicas Tipo A/metabolismo , Endopeptidasas/metabolismo , Péptidos/metabolismo , Proteolisis , Espectrometría de Masas en Tándem , Secuencia de Aminoácidos , Toxinas Botulínicas Tipo A/sangre , Cromatografía Liquida , Humanos , Datos de Secuencia Molecular , Péptidos/química
12.
Protein Expr Purif ; 110: 122-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25727047

RESUMEN

The receptor-binding domain of botulinum neurotoxins (the HC fragment) is a promising vaccine candidate. Among the HC fragments of the seven BoNT serotypes, the expression of HC/B in Escherichia coli is considered especially challenging due to its accumulation as a non-soluble protein aggregate. In this study, the effects of different parameters on the expression of soluble HC/B were evaluated using a screening assay that included growing the bacterium at a small scale, a chemical cell lysis step, and a specific ELISA. The highest soluble HC/B expression levels were obtained when the bacterium E. coli BL21(DE3)+pET-9a-HC/B was grown in terrific broth media at 18°C without induction. Under these conditions, the yield was an order of magnitude higher than previously reported. Standard purification of the protein using a nickel column resulted in a low purity of HC/B. However, the addition of an acidic wash step prior to protein elution released a major protein contaminant and significantly increased the purity level. Mass spectrometry analysis identified the contaminant as ArnA, an E. coli protein that often contaminates recombinant His-tagged protein preparations. The purified HC/B was highly immunogenic, protecting mice from a 10(6) LD50 challenge after a single vaccination and generating a neutralizing titer of 50IU/ml after three immunizations. Moreover, the functionality of the protein was preserved, as it inhibited BoNT/B intoxication in vivo, presumably due to blockade of the neurotoxin protein receptor synaptotagmin.


Asunto(s)
Anticuerpos Antibacterianos/biosíntesis , Proteínas Bacterianas/genética , Vacunas Bacterianas/inmunología , Toxinas Botulínicas Tipo A/genética , Botulismo/prevención & control , Plásmidos/metabolismo , Animales , Proteínas Bacterianas/administración & dosificación , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/genética , Toxinas Botulínicas Tipo A/administración & dosificación , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/aislamiento & purificación , Botulismo/inmunología , Botulismo/microbiología , Botulismo/mortalidad , Carboxiliasas/genética , Carboxiliasas/aislamiento & purificación , Clonación Molecular , Clostridium botulinum/química , Clostridium botulinum/inmunología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Histidina/química , Histidina/genética , Ratones , Modelos Moleculares , Oligopéptidos/química , Oligopéptidos/genética , Plásmidos/química , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Análisis de Supervivencia , Vacunación
13.
Anal Biochem ; 456: 50-2, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24721293

RESUMEN

Botulinum neurotoxins (BoNTs) are the most toxic substances known to humans. Endopeptidase-mass spectrometry (Endopep-MS) is used as a specific and rapid in vitro assay to detect BoNTs. In this assay, immunocaptured toxin cleaves a serotype-specific peptide substrate, and the cleavage products are then detected by MS. To further improve the sensitivity of the assay, we report here the rational design of a new substrate peptide for the detection of botulinum neurotoxin type E (BoNT/E). Our strategy was based on previously reported structural interactions integrated with analysis method efficiency considerations. Integration of the newly designed substrate has led to a more than one order of magnitude increased sensitivity of the assay.


Asunto(s)
Toxinas Botulínicas/análisis , Toxinas Botulínicas/metabolismo , Diseño de Fármacos , Espectrometría de Masas/métodos , Péptidos/metabolismo , Secuencia de Aminoácidos , Inmunoensayo , Datos de Secuencia Molecular , Péptidos/química
14.
Vaccines (Basel) ; 12(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38675756

RESUMEN

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in more than seven million deaths worldwide. To reduce viral spread, the Israel Institute for Biological Research (IIBR) developed and produced a new rVSV-SARS-CoV-2-S vaccine candidate (BriLife®) based on a platform of a genetically engineered vesicular stomatitis virus (VSV) vector that expresses the spike protein of SARS-CoV-2 instead of the VSV-G protein on the virus surface. Quantifying the virus titer to evaluate vaccine potency requires a reliable validated assay that meets all the stringent pharmacopeial requirements of a bioanalytical method. Here, for the first time, we present the development and extensive validation of a quantitative plaque assay using Vero E6 cells for the determination of the concentration of the rVSV-SARS-CoV-2-S viral vector. Three different vaccine preparations with varying titers (DP_low, DP_high, and QC sample) were tested according to a strict validation protocol. The newly developed plaque assay was found to be highly specific, accurate, precise, and robust. The mean deviations from the predetermined titers for the DP_low, DP_high, and QC preparations were 0.01, 0.02, and 0.09 log10, respectively. Moreover, the mean %CV values for intra-assay precision were 18.7%, 12.0%, and 6.0%, respectively. The virus titers did not deviate from the established values between cell passages 5 and 19, and no correlation was found between titer and passage. The validation results presented herein indicate that the newly developed plaque assay can be used to determine the concentration of the BriLife® vaccine, suggesting that the current protocol is a reliable methodology for validating plaque assays for other viral vaccines.

15.
Front Bioeng Biotechnol ; 12: 1333548, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449674

RESUMEN

The COVID-19 pandemic has led to high global demand for vaccines to safeguard public health. To that end, our institute has developed a recombinant viral vector vaccine utilizing a modified vesicular stomatitis virus (VSV) construct, wherein the G protein of VSV is replaced with the spike protein of SARS-CoV-2 (rVSV-ΔG-spike). Previous studies have demonstrated the production of a VSV-based vaccine in Vero cells adsorbed on Cytodex 1 microcarriers or in suspension. However, the titers were limited by both the carrier surface area and shear forces. Here, we describe the development of a bioprocess for rVSV-ΔG-spike production in serum-free Vero cells using porous Fibra-Cel® macrocarriers in fixed-bed BioBLU®320 5p bioreactors, leading to high-end titers. We identified core factors that significantly improved virus production, such as the kinetics of virus production, the use of macrospargers for oxygen supply, and medium replenishment. Implementing these parameters, among others, in a series of GMP production processes improved the titer yields by at least two orders of magnitude (2e9 PFU/mL) over previously reported values. The developed process was highly effective, repeatable, and robust, creating potent and genetically stable vaccine viruses and introducing new opportunities for application in other viral vaccine platforms.

16.
Toxins (Basel) ; 14(4)2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35448890

RESUMEN

The receptor-binding domain of botulinum neurotoxin (HC fragment), is a promising botulism vaccine candidate. In the current study, fermentation strategies were evaluated to upscale HC fragment expression. A simple translation of the growth conditions from shake flasks to a batch fermentation process resulted in limited culture growth and protein expression (OD of 11 and volumetric protein yields of 123 mg/L). Conducting fed-batch fermentation with rich media and continuous nutrient supplementation significantly improved culture growth (OD of 40.3) and protein expression (1093 mg/L). A further increase in HC fragment yield was achieved by high cell density cultivation (HCDC). The bacterium was grown in a defined medium and with a combined bolus/continuous feed of nutrients to maintain desired oxygen levels and prevent acetate accumulation. The final OD of the process was 260, and the volumetric yield of the HC fragment was 2065 mg/L, which reflects improvement by an order of magnitude. Purified HC fragments, produced by HCDC, exhibited typical biochemical and protective characteristics in mice. Taken together, the advancements achieved in this study promote large-scale production of the HC fragment in E. coli for use in anti-botulism vaccines.


Asunto(s)
Toxinas Botulínicas Tipo A , Botulismo , Animales , Toxinas Botulínicas Tipo A/metabolismo , Botulismo/prevención & control , Recuento de Células , Medios de Cultivo/metabolismo , Escherichia coli , Fermentación , Ratones , Proteínas Recombinantes/metabolismo
17.
Vaccines (Basel) ; 10(9)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36146601

RESUMEN

Botulism is a paralytic disease caused by botulinum neurotoxins (BoNTs). Equine antitoxin is currently the standard therapy for botulism in human. The preparation of equine antitoxin relies on the immunization of horses with botulinum toxoid, which suffers from low yield and safety limitations. The Hc fragment of BoNTs was suggested to be a potent antibotulinum subunit vaccine. The current study presents a comparative evaluation of equine-based toxoid-derived antitoxin (TDA) and subunit-derived antitoxin (SDA). The potency of recombinant Hc/A, Hc/B, and Hc/E in mice was similar to that of toxoids of the corresponding serotypes. A single boost with Hc/E administered to a toxoid E-hyperimmune horse increased the neutralizing antibody concentration (NAC) from 250 to 850 IU/mL. Immunization of naïve horses with the recombinant subunits induced a NAC comparable to that of horses immunized with the toxoid. SDA and TDA bound common epitopes on BoNTs, as demonstrated by an in vitro competition binding assay. In vivo, SDA and TDA showed similar efficacy when administered to guinea pigs postexposure to a lethal dose of botulinum toxins. Collectively, the results of the current study suggest that recombinant BoNT subunits may replace botulinum toxoids as efficient and safe antigens for the preparation of pharmaceutical anti-botulinum equine antitoxins.

18.
Front Immunol ; 13: 942317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059507

RESUMEN

Hyper-immune antisera from large mammals, in particular horses, are routinely used for life-saving anti-intoxication intervention. While highly efficient, the use of these immunotherapeutics is complicated by possible recipient reactogenicity and limited availability. Accordingly, there is an urgent need for alternative improved next-generation immunotherapies to respond to this issue of high public health priority. Here, we document the development of previously unavailable tools for equine antibody engineering. A novel primer set, EquPD v2020, based on equine V-gene data, was designed for efficient and accurate amplification of rearranged horse antibody V-segments. The primer set served for generation of immune phage display libraries, representing highly diverse V-gene repertoires of horses immunized against botulinum A or B neurotoxins. Highly specific scFv clones were selected and expressed as full-length antibodies, carrying equine V-genes and human Gamma1/Lambda constant genes, to be referred as "Centaur antibodies". Preliminary assessment in a murine model of botulism established their therapeutic potential. The experimental approach detailed in the current report, represents a valuable tool for isolation and engineering of therapeutic equine antibodies.


Asunto(s)
Anticuerpos , Región Variable de Inmunoglobulina , Animales , Anticuerpos/genética , Técnicas de Visualización de Superficie Celular , Caballos , Humanos , Región Variable de Inmunoglobulina/genética , Mamíferos , Ratones , Neurotoxinas , Proteínas Recombinantes/genética
19.
ALTEX ; 39(1): 113-122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34798660

RESUMEN

The pharmacopeia mouse neutralization assay (PMNA) is the standard method for determining the potency of phar­maceutical botulinum antitoxins. However, a PMNA requires a large number of mice, and, thus, an alternative in vitro method to replace it is needed. Herein, we developed an in vitro SiMa cell line-based neutralization assay (SBNA), compatible with a PMNA design, for therapeutic antitoxins against type E botulinum neurotoxin (BoNT/E). The SBNA measures the residual cellular activity of BoNT/E following antitoxin neutralization in the SiMa lysate using a specific quantitative sandwich ELISA for its cleaved cellular target protein SNAP-25. The potencies of different pharmaceutical antitoxin preparations were determined by applying two different quantification approaches: (1) a cutoff value, in accor­dance with the pharmacopeia concept, and (2) nonlinear regression of a standard curve generated by serial dilutions of a standard antitoxin. Both approaches achieved accurate potencies compared to the PMNA (average %RE of ~16%). Furthermore, the SBNA was able to determine in vitro, for the first time, the accurate neutralizing activity (%RE ≤ 20) of next-generation equine and rabbit therapeutic antitoxins. Collectively, a high correlation between SBNA and PMNA results was obtained for all antitoxin preparations (r = 0.99, P < 0.0001 for the standard curve approach, and r = 0.97, p < 0.0001 for the cutoff approach). In conclusion, the SBNA can potentially replace the PMNA and markedly reduce the need for laboratory animals for the approval of botulinum antitoxin preparations.


Asunto(s)
Antitoxinas , Toxinas Botulínicas Tipo A , Botulismo , Preparaciones Farmacéuticas , Alternativas a las Pruebas en Animales , Animales , Antitoxina Botulínica , Caballos , Ratones , Conejos
20.
Antibodies (Basel) ; 11(1)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35323195

RESUMEN

Botulinum neurotoxin type E (BoNT/E), the fastest acting toxin of all BoNTs, cleaves the 25 kDa synaptosomal-associated protein (SNAP-25) in motor neurons, leading to flaccid paralysis. The specific detection and quantification of the BoNT/E-cleaved SNAP-25 neoepitope can facilitate the development of cell-based assays for the characterization of anti-BoNT/E antibody preparations. In order to isolate highly specific monoclonal antibodies suitable for the in vitro immuno-detection of the exposed neoepitope, mice and rabbits were immunized with an eight amino acid peptide composed of the C-terminus of the cleaved SNAP-25. The immunized rabbits developed a specific and robust polyclonal antibody response, whereas the immunized mice mostly demonstrated a weak antibody response that could not discriminate between the two forms of SNAP-25. An immune scFv phage-display library was constructed from the immunized rabbits and a panel of antibodies was isolated. The sequence alignment of the isolated clones revealed high similarity between both heavy and light chains with exceptionally short HCDR3 sequences. A chimeric scFv-Fc antibody was further expressed and characterized, exhibiting a selective, ultra-high affinity (pM) towards the SNAP-25 neoepitope. Moreover, this antibody enabled the sensitive detection of cleaved SNAP-25 in BoNT/E treated SiMa cells with no cross reactivity with the intact SNAP-25. Thus, by applying an immunization and selection procedure, we have isolated a novel, specific and high-affinity antibody against the BoNT/E-derived SNAP-25 neoepitope. This novel antibody can be applied in in vitro assays that determine the potency of antitoxin preparations and reduce the use of laboratory animals for these purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA