Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Immunol ; 52(1): 138-148, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34676541

RESUMEN

The interferon pathway, a key antiviral defense mechanism, is being considered as a therapeutic target in COVID-19. Both, substitution of interferon and JAK/STAT inhibition to limit cytokine storms have been proposed. However, little is known about possible abnormalities in STAT signaling in immune cells during SARS-CoV-2 infection. We investigated downstream targets of interferon signaling, including STAT1, STAT2, pSTAT1 and 2, and IRF1, 7 and 9 by flow cytometry in 30 patients with COVID-19, 17 with mild, and 13 with severe infection. We report upregulation of STAT1 and IRF9 in mild and severe COVID-19 cases, which correlated with the IFN-signature assessed by Siglec-1 (CD169) expression on peripheral monocytes. Interestingly, Siglec-1 and STAT1 in CD14+ monocytes and plasmablasts showed lower expression among severe cases compared to mild cases. Contrary to the baseline STAT1 expression, the phosphorylation of STAT1 was enhanced in severe COVID-19 cases, indicating a dysbalanced JAK/STAT signaling that fails to induce transcription of interferon stimulated response elements (ISRE). This abnormality persisted after IFN-α and IFN-γ stimulation of PBMCs from patients with severe COVID-19. Data suggest impaired STAT1 transcriptional upregulation among severely infected patients may represent a potential predictive biomarker and would allow stratification of patients for certain interferon-pathway targeted treatments.


Asunto(s)
COVID-19/inmunología , Monocitos/inmunología , SARS-CoV-2/inmunología , Factor de Transcripción STAT1/inmunología , Transducción de Señal/inmunología , Regulación hacia Arriba/inmunología , Adulto , Anciano , Femenino , Humanos , Factores Reguladores del Interferón/inmunología , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Fosforilación/inmunología
2.
Crit Care ; 26(1): 362, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434724

RESUMEN

BACKGROUND: Mobilisation and exercise intervention in general are safe and feasible in critically ill patients. For patients requiring catecholamines, however, doses of norepinephrine safe for mobilisation in the intensive care unit (ICU) are not defined. This study aimed to describe mobilisation practice in our hospital and identify doses of norepinephrine that allowed a safe mobilisation. METHODS: We conducted a retrospective single-centre cohort study of 16 ICUs at a university hospital in Germany with patients admitted between March 2018 and November 2021. Data were collected from our patient data management system. We analysed the effect of norepinephrine on level (ICU Mobility Scale) and frequency (units per day) of mobilisation, early mobilisation (within 72 h of ICU admission), mortality, and rate of adverse events. Data were extracted from free-text mobilisation entries using supervised machine learning (support vector machine). Statistical analyses were done using (generalised) linear (mixed-effect) models, as well as chi-square tests and ANOVAs. RESULTS: A total of 12,462 patients were analysed in this study. They received a total of 59,415 mobilisation units. Of these patients, 842 (6.8%) received mobilisation under continuous norepinephrine administration. Norepinephrine administration was negatively associated with the frequency of mobilisation (adjusted difference -0.07 mobilisations per day; 95% CI - 0.09, - 0.05; p ≤ 0.001) and early mobilisation (adjusted OR 0.83; 95% CI 0.76, 0.90; p ≤ 0.001), while a higher norepinephrine dose corresponded to a lower chance to be mobilised out-of-bed (adjusted OR 0.01; 95% CI 0.00, 0.04; p ≤ 0.001). Mobilisation with norepinephrine did not significantly affect mortality (p > 0.1). Higher compared to lower doses of norepinephrine did not lead to a significant increase in adverse events in our practice (p > 0.1). We identified that mobilisation was safe with up to 0.20 µg/kg/min norepinephrine for out-of-bed (IMS ≥ 2) and 0.33 µg/kg/min for in-bed (IMS 0-1) mobilisation. CONCLUSIONS: Mobilisation with norepinephrine can be done safely when considering the status of the patient and safety guidelines. We demonstrated that safe mobilisation was possible with norepinephrine doses up to 0.20 µg/kg/min for out-of-bed (IMS ≥ 2) and 0.33 µg/kg/min for in-bed (IMS 0-1) mobilisation.


Asunto(s)
Enfermedad Crítica , Norepinefrina , Humanos , Enfermedad Crítica/terapia , Norepinefrina/farmacología , Norepinefrina/uso terapéutico , Estudios Retrospectivos , Estudios de Cohortes , Estudios Prospectivos
3.
Brain Behav Immun ; 93: 415-419, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33359380

RESUMEN

BACKGROUND: COVID-19 intensive care patients can present with neurological syndromes, usually in the absence of SARS-CoV-2 in cerebrospinal fluid (CSF). The recent finding of some virus-neutralizing antibodies cross-reacting with brain tissue suggests the possible involvement of specific autoimmunity. DESIGN: Blood and CSF samples from eleven critically ill COVID-19 patients presenting with unexplained neurological symptoms including myoclonus, oculomotor disturbance, delirium, dystonia and epileptic seizures, were analyzed for anti-neuronal and anti-glial autoantibodies. RESULTS: Using cell-based assays and indirect immunofluorescence on unfixed murine brain sections, all patients showed anti-neuronal autoantibodies in serum or CSF. Antigens included intracellular and neuronal surface proteins, such as Yo or NMDA receptor, but also various specific undetermined epitopes, reminiscent of the brain tissue binding observed with certain human monoclonal SARS-CoV-2 antibodies. These included vessel endothelium, astrocytic proteins and neuropil of basal ganglia, hippocampus or olfactory bulb. CONCLUSION: The high frequency of autoantibodies targeting the brain in the absence of other explanations suggests a causal relationship to clinical symptoms, in particular to hyperexcitability (myoclonus, seizures). Several underlying autoantigens and their potential molecular mimicry with SARS-CoV-2 still await identification. However, autoantibodies may already now explain some aspects of multi-organ disease in COVID-19 and can guide immunotherapy in selected cases.


Asunto(s)
Autoanticuerpos/líquido cefalorraquídeo , COVID-19/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso Central/virología , Anciano , Autoantígenos , Autoinmunidad , Femenino , Humanos , Masculino , Persona de Mediana Edad
4.
J Pathol ; 251(2): 175-186, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32232854

RESUMEN

Neutrophil infiltration is a hallmark of peritoneal inflammation, but mechanisms regulating neutrophil recruitment in patients with peritoneal dialysis (PD)-related peritonitis are not fully defined. We examined 104 samples of PD effluent collected during acute peritonitis for correspondence between a broad range of soluble parameters and neutrophil counts. We observed an association between peritoneal IL-17 and neutrophil levels. This relationship was evident in effluent samples with low but not high IFN-γ levels, suggesting a differential effect of IFN-γ concentration on neutrophil infiltration. Surprisingly, there was no association of neutrophil numbers with the level of CXCL1, a key IL-17-induced neutrophil chemoattractant. We investigated therefore the production of CXCL1 by human peritoneal mesothelial cells (HPMCs) under in vitro conditions mimicking clinical peritonitis. Stimulation of HPMCs with IL-17 increased CXCL1 production through induction of transcription factor SP1 and activation of the SP1-binding region of the CXCL1 promoter. These effects were amplified by TNFα. In contrast, IFN-γ dose-dependently suppressed IL-17-induced SP1 activation and CXCL1 production through a transcriptional mechanism involving STAT1. The SP1-mediated induction of CXCL1 was also observed in HPMCs exposed to PD effluent collected during peritonitis and containing IL-17 and TNFα, but not IFN-γ. Supplementation of the effluent with IFN-γ led to a dose-dependent activation of STAT1 and a resultant inhibition of SP1-induced CXCL1 expression. Transmesothelial migration of neutrophils in vitro increased upon stimulation of HPMCs with IL-17 and was reduced by IFN-γ. In addition, HPMCs were capable of binding CXCL1 at their apical cell surface. These observations indicate that changes in relative peritoneal concentrations of IL-17 and IFN-γ can differently engage SP1-STAT1, impacting on mesothelial cell transcription of CXCL1, whose release and binding to HPMC surface may determine optimal neutrophil recruitment and retention during peritonitis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Quimiocina CXCL1/metabolismo , Interferón gamma/farmacología , Interleucina-17/farmacología , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Peritoneo/efectos de los fármacos , Peritonitis/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Células Cultivadas , Quimiocina CXCL1/genética , Femenino , Humanos , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Neutrófilos/patología , Peritoneo/metabolismo , Peritoneo/patología , Peritonitis/genética , Peritonitis/patología , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Factor de Transcripción Sp1/genética , Transcripción Genética
5.
Z Geburtshilfe Neonatol ; 225(2): 183-187, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33873231

RESUMEN

INTRODUCTION: SARS-CoV-2 is a novel coronavirus that was first isolated in Wuhan, China, and resulted in a rapidly spreading pandemic worldwide. Currently there is only limited evidence on the effect of COVID-19 on pregnant women. CASE: Here we present one of the first serious COVID-19 cases in pregnancy at term with subsequent delivery. Postpartum the mother required antibiotic and symptomatic treatment. She experienced acute worsening of symptoms and developed acute respiratory failure requiring endotracheal intubation and subsequently extracorporeal membrane oxygenation. CONCLUSION: COVID-19 affects all medical disciplines, requiring interdisciplinary approaches and development of patient care regimes. Obstetricians should be aware and be prepared for the special needs of pregnant women with potential prenatal and postnatal issues. Ideally pregnant COVID-19 patients should be cared for at a tertiary perinatal center with experienced perinatologists and neonatologists.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Síndrome de Dificultad Respiratoria , China , Femenino , Humanos , Periodo Periparto , Embarazo , Complicaciones Infecciosas del Embarazo/diagnóstico , Complicaciones Infecciosas del Embarazo/terapia , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/terapia , SARS-CoV-2
6.
Crit Care ; 24(1): 676, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287877

RESUMEN

BACKGROUND: There is emerging evidence for enhanced blood coagulation in coronavirus 2019 (COVID-19) patients, with thromboembolic complications contributing to morbidity and mortality. The mechanisms underlying this prothrombotic state remain enigmatic. Further data to guide anticoagulation strategies are urgently required. METHODS: We used viscoelastic rotational thromboelastometry (ROTEM) in a single-center cohort of 40 critically ill COVID-19 patients. RESULTS: Clear signs of a hypercoagulable state due to severe hypofibrinolysis were found. Maximum lysis, especially following stimulation of the extrinsic coagulation system, was inversely associated with an enhanced risk of thromboembolic complications. Combining values for maximum lysis with D-dimer concentrations revealed high sensitivity and specificity of thromboembolic risk prediction. CONCLUSIONS: The study identifies a reduction in fibrinolysis as an important mechanism in COVID-19-associated coagulopathy. The combination of ROTEM and D-dimer concentrations may prove valuable in identifying patients requiring higher intensity anticoagulation.


Asunto(s)
COVID-19/complicaciones , Fibrinólisis/fisiología , Tromboelastografía/métodos , Tromboembolia/diagnóstico , Coagulación Sanguínea/fisiología , Pruebas de Coagulación Sanguínea/métodos , Pruebas de Coagulación Sanguínea/normas , COVID-19/diagnóstico por imagen , COVID-19/fisiopatología , Estudios de Cohortes , Enfermedad Crítica/epidemiología , Enfermedad Crítica/terapia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sistemas de Atención de Punto/normas , Sistemas de Atención de Punto/estadística & datos numéricos , Tromboembolia/diagnóstico por imagen , Sustancias Viscoelásticas/análisis , Sustancias Viscoelásticas/uso terapéutico
7.
J Am Soc Nephrol ; 29(6): 1636-1648, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29654213

RESUMEN

Background The high cardiovascular morbidity and mortality of patients with CKD may result in large part from medial vascular calcification, a process promoted by hyperphosphatemia and involving osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Reduced serum zinc levels have frequently been observed in patients with CKD, but the functional relevance of this remains unclear.Methods We performed experiments in primary human aortic VSMCs; klotho-hypomorphic (kl/kl), subtotal nephrectomy, and cholecalciferol-overload mouse calcification models; and serum samples from patients with CKD.Results In cultured VSMCs, treatment with zinc sulfate (ZnSO4) blunted phosphate-induced calcification, osteo-/chondrogenic signaling, and NF-κB activation. ZnSO4 increased the abundance of zinc-finger protein TNF-α-induced protein 3 (TNFAIP3, also known as A20), a suppressor of the NF-κB pathway, by zinc-sensing receptor ZnR/GPR39-dependent upregulation of TNFAIP3 gene expression. Silencing of TNFAIP3 in VSMCs blunted the anticalcific effects of ZnSO4 under high phosphate conditions. kl/kl mice showed reduced plasma zinc levels, and ZnSO4 supplementation strongly blunted vascular calcification and aortic osteoinduction and upregulated aortic Tnfaip3 expression. ZnSO4 ameliorated vascular calcification in mice with chronic renal failure and mice with cholecalciferol overload. In patients with CKD, serum zinc concentrations inversely correlated with serum calcification propensity. Finally, ZnSO4 ameliorated the osteoinductive effects of uremic serum in VSMCs.Conclusions Zinc supplementation ameliorates phosphate-induced osteo-/chondrogenic transdifferentiation of VSMCs and vascular calcification through an active cellular mechanism resulting from GPR39-dependent induction of TNFAIP3 and subsequent suppression of the NF-κB pathway. Zinc supplementation may be a simple treatment to reduce the burden of vascular calcification in CKD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fallo Renal Crónico/sangre , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Calcificación Vascular/prevención & control , Sulfato de Zinc/farmacología , Animales , Aorta , Transdiferenciación Celular , Células Cultivadas , Suplementos Dietéticos , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Silenciador del Gen , Glucuronidasa/genética , Humanos , Hidroxietilrutósido , Hiperfosfatemia/sangre , Hiperfosfatemia/complicaciones , Proteínas Klotho , Ratones , FN-kappa B/antagonistas & inhibidores , Nefrectomía , Nefrocalcinosis/prevención & control , Fosfatos , Transducción de Señal , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Calcificación Vascular/sangre , Calcificación Vascular/etiología , Zinc/sangre
8.
Nephrol Dial Transplant ; 33(1): 34-43, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28992224

RESUMEN

BACKGROUND: High mortality of haemodialysis patients is associated with systemic chronic inflammation and overactivation of the renin-angiotensin system (RAS). Insufficient elimination of pro-inflammatory immune mediators, especially in the molecular weight range of 15-45 kDa, may be one of the reasons for this. Employment of haemodialysis membranes with increased permeability was shown to ameliorate the inflammatory response and might modulate the effects of local RAS. In this study, we tested the impact of high cut-off (HCO), medium cut-off (MCO) and high-flux (HF) dialysis on leucocytic transcripts of angiotensin-converting enzymes (ACE and ACE2). Additionally, the impact of HCO, MCO and HF sera and dialysates on local ACEs and inflammation markers was tested in THP-1 monocytes. METHODS: Patients' leucocytes were obtained from our recent clinical studies comparing HCO and MCO dialysers with HF. The cells were subjected to quantitaive polymerase chain reaction (qPCR) analyses with TaqMan probes specific for ACE, ACE2 and angiotensin II (AngII) and Ang1-7 receptors. Sera and dialysates from the clinical trials as well as samples from in vitro dialysis were tested on THP-1 monocytic cells. The cells were subjected to qPCR analyses with TaqMan probes specific for ACE, ACE2, interleukin-6 and tumour necrosis factor α and immunocytochemistry with ACE and ACE2 antibodies. RESULTS: Leucocytes obtained from patients treated with HCO or MCO demonstrated decreased transcript expression of ACE, while ACE2 was significantly upregulated as compared with HF. Receptors for AngII and Ang1-7 remained unchanged. THP-1 monocytes preconditioned with HCO and MCO patients' or in vitro dialysis sera reflected the same expressional regulation of ACE and ACE2 as those observed in HCO and MCO leucocytes. As a complementary finding, treatment with HCO and MCO in vitro dialysates induced a pro-inflammatory response of the cells as demonstrated by elevated messenger RNA expression of tumour necrosis factor α and interleukin-6, as well as upregulation of ACE and decreased levels of ACE2. CONCLUSIONS: Taken together, these data demonstrate that employment of membranes with high permeability eliminates a spectrum of mediators from circulation that affect the RAS components in leucocytes, especially ACE/ACE2.


Asunto(s)
Soluciones para Diálisis/metabolismo , Mediadores de Inflamación/sangre , Monocitos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Diálisis Renal/métodos , Angiotensina I/metabolismo , Enzima Convertidora de Angiotensina 2 , Biomarcadores/metabolismo , Estudios Cruzados , Método Doble Ciego , Humanos , Inflamación/enzimología , Inflamación/patología , Fragmentos de Péptidos/metabolismo , Proyectos Piloto , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo
9.
Nephrol Dial Transplant ; 33(4): 574-585, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29228352

RESUMEN

Background: Vascular calcification is enhanced in uraemic chronic haemodialysis patients, likely due to the accumulation of midsize uraemic toxins, such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Here we have assessed the impact of uraemia on vascular smooth muscle cell (VSMC) calcification and examined the role of IL-6 and TNF-α as possible mediators and, most importantly, its underlying signalling pathway in VSMCs. Methods: VSMCs were incubated with samples of uraemic serum obtained from patients treated with haemodialysis for renal failure in the Permeability Enhancement to Reduce Chronic Inflammation-I clinical trial. The VSMCs were assessed for IL-6 gene regulation and promoter activation in response to uraemic serum and TNF-α with reporter assays and electrophoretic mobility shift assay and for osteoblastic transition, cellular calcification and cell viability upon osteogenic differentiation. Results: Uraemic serum contained higher levels of TNF-α and IL-6 compared with serum from healthy individuals. Exposure of VSMCs to uraemic serum or recombinant TNF-α lead to a strong upregulation of IL-6 mRNA expression and protein secretion, which was mediated by activator protein 1 (AP-1)/c-FOS-pathway signalling. Uraemic serum induced osteoblastic transition and calcification of VSMCs could be strongly attenuated by blocking TNF-α, IL-6 or AP-1/c-FOS signalling, which was accompanied by improved cell viability. Conclusion: These results demonstrate that uraemic serum contains higher levels of uraemic toxins TNF-α and IL-6 and that uraemia promotes vascular calcification through a signalling pathway involving TNF-α, IL-6 and the AP-1/c-FOS cytokine-signalling axis. Thus treatment modalities aiming to reduce systemic TNF-α and IL-6 levels in chronic haemodialysis patients should be evaluated in future clinical trials.


Asunto(s)
Interleucina-6/metabolismo , Músculo Liso Vascular/patología , Osteoblastos/patología , Factor de Necrosis Tumoral alfa/farmacología , Uremia/metabolismo , Calcificación Vascular/patología , Anciano , Diferenciación Celular , Células Cultivadas , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Masculino , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo , Uremia/patología , Calcificación Vascular/inducido químicamente , Calcificación Vascular/metabolismo
10.
Blood Purif ; 45(1-3): 131-138, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29402827

RESUMEN

BACKGROUND: Vascular calcification is a common phenomenon in patients with chronic kidney disease and strongly associated with increased cardiovascular mortality. Vascular calcification is an active process mediated in part by inflammatory processes in vascular smooth muscle cells (VSMC). These could be modified by the insufficient removal of proinflammatory cytokines through conventional high-flux (HF) membranes. Recent trials demonstrated a reduction of inflammation in VSMC by use of dialysis membranes with a higher and steeper cut-off. These membranes caused significant albumin loss. Therefore, the effect of high retention Onset (HRO) dialysis membranes on vascular calcification and its implications in vitro was evaluated. METHODS: In the PERCI II trial, 48 chronic dialysis patients were dialyzed using HF and HRO dialyzers and serum samples were collected. Calcifying VSMC were incubated with the serum samples. Calcification was determined using alizarin red staining (AZR) and determination of alkaline phosphatase (ALP) activity. Furthermore, apoptosis was evaluated, and release of matrix Gla protein (MGP), osteopontin (OPN) and growth differentiation factor 15 (GDF-15) were measured in cell supernatants. RESULTS: Vascular calcification in vitro was significantly reduced by 24% (ALP) and 36% (AZR) after 4 weeks of HRO dialysis and by 33% (ALP) and 48% (AZR) after 12 weeks of dialysis using HRO membranes compared to HF dialysis. Apoptosis was significantly lower in the HRO group. The concentrations of MGP and OPN were significantly elevated after incubation with HF serum compared to HRO serum and healthy controls. Similarly, GDF-15 release in the supernatant was elevated after incubation with HF serum, an effect significantly ameliorated after treatment with HRO medium. CONCLUSIONS: Expanded haemodialysis therapy reduces the pro-calcific potential of serum from dialysis patients in vitro. With a markedly reduced albumin filtration compared to high cut-off dialysis, use of the HRO dialyzers may possibly provide a treatment option for chronic dialysis patients to reduce the progression of vascular calcification.


Asunto(s)
Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Diálisis Renal , Calcificación Vascular/metabolismo , Calcificación Vascular/prevención & control , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Calcificación Vascular/patología
11.
Artif Organs ; 41(9): 803-809, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28524237

RESUMEN

Recently developed high-flux (HF) dialysis membranes with extended permeability provide better clearance of middle-sized molecules such as interleukins (ILs). Whether this modulation of inflammation influences the procalcific effects of septic plasma on vascular smooth muscle cells (VSMCs) is not known. To assess the effects of high cut-off (HCO) and medium cut-off (MCO) membranes on microinflammation and in vitro vascular calcification we developed a miniature dialysis model. Plasma samples from lipopolysaccharide-spiked blood were dialyzed with HF, HCO, and MCO membranes in an in vitro miniature dialysis model. Afterwards, IL-6 concentrations were determined in dialysate and plasma. Calcifying VSMCs were incubated with dialyzed plasma samples and vascular calcification was assessed. Osteopontin (OPN) and matrix Gla protein (MGP) were measured in VSMC supernatants. IL-6 plasma concentrations were markedly lower with HCO and MCO dialysis. VSMC calcification was significantly lower after incubation with MCO- and HCO-serum compared to HF plasma. MGP and OPN levels in supernatants were significantly lower in the MCO but not in the HCO group compared to HF. In vitro dialysis of cytokine-enriched plasma samples with MCO and HCO membranes reduces IL-6 levels. The induction of vascular calcification by cytokine-enriched plasma is reduced after HCO and MCO dialysis.


Asunto(s)
Soluciones para Hemodiálisis/química , Inflamación/sangre , Fallo Renal Crónico/terapia , Membranas Artificiales , Diálisis Renal/efectos adversos , Calcificación Vascular/prevención & control , Adolescente , Proteínas de Unión al Calcio/sangre , Proteínas de Unión al Calcio/química , Células Cultivadas , Proteínas de la Matriz Extracelular/sangre , Proteínas de la Matriz Extracelular/química , Voluntarios Sanos , Humanos , Técnicas In Vitro , Inflamación/complicaciones , Interleucina-6/sangre , Interleucina-6/química , Miocitos del Músculo Liso , Osteopontina/sangre , Osteopontina/química , Plasma/química , Plasma/microbiología , Diálisis Renal/instrumentación , Diálisis Renal/métodos , Calcificación Vascular/sangre , Calcificación Vascular/etiología , Proteína Gla de la Matriz
13.
Nephrol Dial Transplant ; 31(10): 1706-12, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27445317

RESUMEN

BACKGROUND: Vascular calcification is enhanced in chronic dialysis patients, possibly due to the insufficient removal of various intermediate molecular weight uraemic toxins such as interleukins with conventional membranes. In this study, we assessed the modulation of in vitro vascular calcification with the use of high cut-off (HCO) membranes in chronic dialysis patients. METHODS: In a PERCI trial, 43 chronic dialysis patients were treated with conventional high-flux and HCO filters for 3 weeks in a randomized order following a 2-period crossover design. After each phase, serum predialysis samples were drawn. Calcifying human coronary vascular smooth muscle cells (VSMCs) were incubated with the patient's serum samples. Calcification was assessed with alkaline phosphatase (ALP) and alizarin red staining. In the clinical trial, HCO dialysis reduced the serum levels of the soluble tumour necrosis factor receptor (sTNFR) 1 and 2, vascular cell adhesion molecule 1 (VCAM-1) and soluble interleukin-2 receptor (sIL2R). We therefore investigated the in vitro effects of these mediators on vascular calcification. RESULTS: VSMCs incubated with HCO dialysis serum showed a 26% reduction of ALP with HCO serum compared with high-flux serum. Alizarin was 43% lower after incubation with the HCO serum compared with the high-flux serum. While sIL2R and sTNFR 1 and 2 showed no effects on VSMC calcification, VCAM-1 caused a dose-dependent enhancement of calcification. CONCLUSIONS: The use of HCO dialysis membranes in chronic dialysis patients reduces the procalcific effects of serum on VSMC in vitro. The mechanisms of the strong effect of HCO on in vitro calcification are not completely understood. One factor may be lower levels of VCAM-1 in HCO serum samples, since VCAM-1 was able to induce vascular calcification in our experiments. Neither sTNFR 1, sTNFR 2 nor sIL2R enhance vascular calcification in vitro. Regardless of the mechanisms, our results encourage further studies of highly permeable filters in chronic dialysis patients.


Asunto(s)
Interleucinas/metabolismo , Músculo Liso Vascular/metabolismo , Diálisis Renal/efectos adversos , Calcificación Vascular/metabolismo , Adolescente , Biomarcadores/metabolismo , Estudios Cruzados , Humanos , Músculo Liso Vascular/citología , Calcificación Vascular/etiología , Calcificación Vascular/patología
14.
Eur J Clin Invest ; 45(12): 1333-40, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26519693

RESUMEN

BACKGROUND: Haemodialysis patients suffer from chronic systemic inflammation and high incidence of cardiovascular disease. One cause for this may be the failure of diseased kidneys to eliminate immune mediators. Current haemodialysis treatment achieves insufficient elimination of proteins in the molecular weight range 15-45 kD. Thus, high cut-off dialysis might improve the inflammatory state. DESIGN: In this randomized crossover trial, 43 haemodialysis patients were treated for 3 weeks with high cut-off or high-flux dialysis. Inflammatory plasma mediators, monocyte subpopulation distribution and leucocyte gene expression were quantified. RESULTS: High cut-off dialysis supplemented by a low-flux filter did not influence the primary end-point, expression density of CD162 on monocytes. Nevertheless, treatment reduced multiple immune mediators in plasma. Such reduction proved - at least for some markers - to be a sustained effect over the interdialytic interval. Thus, for example, soluble TNF-receptor 1 concentration predialysis was reduced from median 13·3 (IQR 8·9-17·2) to 9·7 (IQR 7·5-13·2) ng/mL with high cut-off while remaining constant with high-flux treatment. The expression profile of multiple proinflammatory genes in leucocytes was significantly dampened. Treatment was well tolerated although albumin losses in high cut-off dialysis would be prohibitive against long-term use. CONCLUSIONS: The study shows for the first time that a dampening effect of high cut-off dialysis on systemic inflammation is achievable. Earlier studies had failed due to short study duration or insufficient dialysis efficacy. Removal of soluble mediators from the circulation influences cellular activation levels in leucocytes. Continued development of less albumin leaky membranes with similar cytokine elimination is justified.


Asunto(s)
Fallo Renal Crónico/terapia , Diálisis Renal/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Estudios Cruzados , Humanos , Masculino , Persona de Mediana Edad , Células Musculares/metabolismo , Seguridad del Paciente , Estudios Prospectivos , Resultado del Tratamiento , Adulto Joven
15.
Cancer Chemother Pharmacol ; 91(4): 325-330, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36947209

RESUMEN

PURPOSE: For patients with severe renal impairment (CrCl ≤ 30 ml/min) or end-stage renal disease (ESRD), olaparib intake is not recommended as the pharmacokinetics and safety of olaparib have not been evaluated in this patient group. Therefore, this valuable patient group is generally excluded from poly(ADP-ribose) polymerase inhibitor (PARPi) therapy. Here we report the pharmacokinetics (PK), efficacy, safety and tolerability of olaparib capsules 200 mg BID in a patient with recurrent epithelial ovarian cancer (EOC) and ESRD requiring hemodialysis. METHODS: Blood and dialysate samples of the patient were collected on a dialysis and non-dialysis day. Olaparib total plasma concentrations were determined through high-performance liquid chromatography with tandem mass spectrometric detection. Actual scheduled sample times were used in the PK analysis to determine multiple dose PK parameters at steady state. RESULTS: Maximum concentration was achieved 1.5 h after drug administration on non- dialysis and after 1 h on dialysis day. The steady-state trough concentration and the maximal plasma concentration were similar on dialysis and non- dialysis day. On non-dialysis day, the AUCss was 30% higher (24.0 µg.h/mL vs. 16.9 µg.h/ml) than on dialysis day. The plasma clearance CLss/F was lower on non-dialysis day. Olaparib was not detectable in the dialysate samples. CONCLUSION: A total dose of olaparib 200 mg BID capsule formulation was well tolerated by our patient with ESRD and hemodialysis. Moreover, this maintenance therapy led to 16 months of progression free survival. Further trials on PARPi therapy in patients with hemodialysis are warranted.


Asunto(s)
Antineoplásicos , Fallo Renal Crónico , Neoplasias Ováricas , Humanos , Femenino , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/inducido químicamente , Antineoplásicos/efectos adversos , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/terapia , Diálisis Renal , Inhibidores de Poli(ADP-Ribosa) Polimerasas/efectos adversos , Soluciones para Diálisis/uso terapéutico , Ftalazinas/efectos adversos
16.
Front Immunol ; 14: 1209464, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795100

RESUMEN

Aims: Expanded hemodialysis (HDx) therapy with improved molecular cut-off dialyzers exerts beneficial effects on lowering uremia-associated chronic systemic microinflammation, a driver of endothelial dysfunction and cardiovascular disease (CVD) in hemodialysis (HD) patients with end-stage renal disease (ESRD). However, studies on the underlying molecular mechanisms are still at an early stage. Here, we identify the (endothelial) transcription factor Krüppel-like factor 2 (KLF2) and its associated molecular signalling pathways as key targets and regulators of uremia-induced endothelial micro-inflammation in the HD/ESRD setting, which is crucial for vascular homeostasis and controlling detrimental vascular inflammation. Methods and results: First, we found that human microvascular endothelial cells (HMECs) and other typical endothelial and kidney model cell lines (e.g. HUVECs, HREC, and HEK) exposed to uremic serum from patients treated with two different hemodialysis regimens in the Permeability Enhancement to Reduce Chronic Inflammation II (PERCI-II) crossover clinical trial - comparing High-Flux (HF) and Medium Cut-Off (MCO) membranes - exhibited strongly reduced expression of vasculoprotective KLF2 with HF dialyzers, while dialysis with MCO dialyzers led to the maintenance and restoration of physiological KLF2 levels in HMECs. Mechanistic follow-up revealed that the strong downmodulation of KLF2 in HMECs exposed to uremic serum was mediated by a dominant engagement of detrimental ERK instead of beneficial AKT signalling, with subsequent AP1-/c-FOS binding in the KLF2 promoter region, followed by the detrimental triggering of pleiotropic inflammatory mediators, while the introduction of a KLF2 overexpression plasmid could restore physiological KLF2 levels and downmodulate the detrimental vascular inflammation in a mechanistic rescue approach. Conclusion: Uremia downmodulates vasculoprotective KLF2 in endothelium, leading to detrimental vascular inflammation, while MCO dialysis with the novel improved HDx therapy approach can maintain physiological levels of vasculoprotective KLF2.


Asunto(s)
Fallo Renal Crónico , Uremia , Humanos , Células Endoteliales , Diálisis Renal/efectos adversos , Diálisis Renal/métodos , Uremia/terapia , Uremia/complicaciones , Fallo Renal Crónico/terapia , Factores de Transcripción , Inflamación/complicaciones , Factores de Transcripción de Tipo Kruppel/genética
17.
Anaesth Crit Care Pain Med ; 42(5): 101255, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37257753

RESUMEN

BACKGROUND: Corona Virus Disease 2019 (COVID-19) patients display risk factors for intensive care unit acquired weakness (ICUAW). The pandemic increased existing barriers to mobilisation. This study aimed to compare mobilisation practices in COVID-19 and non-COVID-19 patients. METHODS: This retrospective cohort study was conducted at Charité-Universitätsmedizin Berlin, Germany, including adult patients admitted to one of 16 ICUs between March 2018, and November 2021. The effect of COVID-19 on mobilisation level and frequency, early mobilisation (EM) and time to active sitting position (ASP) was analysed. Subgroup analysis on COVID-19 patients and the ICU type influencing mobilisation practices was performed. Mobilisation entries were converted into the ICU mobility scale (IMS) using supervised machine learning. The groups were matched using 1:1 propensity score matching. RESULTS: A total of 12,462 patients were included, receiving 59,415 mobilisations. After matching 611 COVID-19 and non-COVID-19 patients were analysed. They displayed no significant difference in mobilisation frequency (0.4 vs. 0.3, p = 0.7), maximum IMS (3 vs. 3; p = 0.17), EM (43.2% vs. 37.8%; p = 0.06) or time to ASP (HR 0.95; 95% CI: 0.82, 1.09; p = 0.44). Subgroup analysis showed that patients in surge ICUs, i.e., temporarily created ICUs for COVID-19 patients during the pandemic, more commonly received EM (53.9% vs. 39.8%; p = 0.03) and reached higher maximum IMS (4 vs. 3; p = 0.03) without difference in mobilisation frequency (0.5 vs. 0.3; p = 0.32) or time to ASP (HR 1.15; 95% CI: 0.85, 1.56; p = 0.36). CONCLUSION: COVID-19 did not hinder mobilisation. Those treated in surge ICUs were more likely to receive EM and reached higher mobilisation levels.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Estudios Retrospectivos , Pandemias , Unidades de Cuidados Intensivos
18.
Nephrol Dial Transplant ; 27(10): 3823-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22273664

RESUMEN

BACKGROUND: To determine the efficacy of immunoglobulin free light chain (FLC) removal by high cut-off haemodialysis (HCO-HD) as an adjuvant treatment to chemotherapy for patients with acute kidney injury complicating multiple myeloma (MM). METHODS: Sixty-seven patients with dialysis-dependent renal failure secondary to MM were treated with HCO-HD and chemotherapy. RESULTS: The population was predominantly male (62.7%) with new presentation MM (75%) and did not have a history of chronic kidney disease (84%). The mean serum creatinine at presentation was 662 (SD = 349) µmol/L and of the 56.7% of patients who had a renal biopsy, 86.7% had cast nephropathy as the principal diagnosis. Eighty-five percent of patients were treated with a chemotherapy regime consisting of dexamethasone in combination with a novel agent (bortezomib or thalidomide). The median number of HCO-HD sessions was 11 (range 3-45), 97% received an extended dialysis regime. Seventy-six percent of the population had a sustained reduction in serum FLC concentrations by Day 12, of these 71% subsequently became independent of dialysis. In total, 63% of population became independent of dialysis. Factors which predicted independence of dialysis were the degree of FLC reduction at Days 12 (P = 0.002) and 21 (P = 0.005) and the time to initiating HCO-HD (P = 0.006). CONCLUSION: The combination of extended HCO-HD and chemotherapy resulted in sustained reductions in serum FLC concentrations in the majority of patients and a high rate of independence of dialysis.


Asunto(s)
Lesión Renal Aguda/etiología , Lesión Renal Aguda/terapia , Cadenas Ligeras de Inmunoglobulina/sangre , Mieloma Múltiple/complicaciones , Mieloma Múltiple/terapia , Diálisis Renal/métodos , Lesión Renal Aguda/inmunología , Anciano , Ácidos Borónicos/administración & dosificación , Bortezomib , Terapia Combinada , Bases de Datos Factuales , Dexametasona/administración & dosificación , Femenino , Humanos , Cadenas Ligeras de Inmunoglobulina/aislamiento & purificación , Masculino , Persona de Mediana Edad , Mieloma Múltiple/inmunología , Pirazinas/administración & dosificación , Talidomida/administración & dosificación
19.
Biomolecules ; 12(8)2022 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-36009051

RESUMEN

Medial vascular calcification is common in chronic kidney disease (CKD) and is closely linked to hyperphosphatemia. Vascular smooth muscle cells (VSMCs) can take up pro-calcific properties and actively augment vascular calcification. Various pro-inflammatory mediators are able to promote VSMC calcification. In this study, we investigated the effects and mechanisms of periostin, a matricellular signaling protein, in calcifying human VSMCs and human serum samples. As a result, periostin induced the mRNA expression of pro-calcific markers in VSMCs. Furthermore, periostin augmented the effects of ß-glycerophosphate on the expression of pro-calcific markers and aggravated the calcification of VSMCs. A periostin treatment was associated with an increased ß-catenin abundance as well as the expression of target genes. The pro-calcific effects of periostin were ameliorated by WNT/ß-catenin pathway inhibitors. Moreover, a co-treatment with an integrin αvß3-blocking antibody blunted the pro-calcific effects of periostin. The silencing of periostin reduced the effects of ß-glycerophosphate on the expression of pro-calcific markers and the calcification of VSMCs. Elevated serum periostin levels were observed in hemodialysis patients compared with healthy controls. These observations identified periostin as an augmentative factor in VSMC calcification. The pro-calcific effects of periostin involve integrin αvß3 and the activation of the WNT/ß-catenin pathway. Thus, the inhibition of periostin may be beneficial to reduce the burden of vascular calcification in CKD patients.


Asunto(s)
Insuficiencia Renal Crónica , Calcificación Vascular , Células Cultivadas , Humanos , Integrina alfaVbeta3/metabolismo , Músculo Liso Vascular/metabolismo , Insuficiencia Renal Crónica/metabolismo , Calcificación Vascular/genética , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
20.
Front Immunol ; 13: 821681, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185912

RESUMEN

Peritoneal dialysis (PD) is a valuable 'home treatment' option, even more so during the ongoing Coronavirus pandemic. However, the long-term use of PD is limited by unfavourable tissue remodelling in the peritoneal membrane, which is associated with inflammation-induced angiogenesis. This appears to be driven primarily through vascular endothelial growth factor (VEGF), while the involvement of other angiogenic signaling pathways is still poorly understood. Here, we have identified the crucial contribution of mesothelial cell-derived angiogenic CXC chemokine ligand 1 (CXCL1) to peritoneal angiogenesis in PD. CXCL1 expression and peritoneal microvessel density were analysed in biopsies obtained by the International Peritoneal Biobank (NCT01893710 at www.clinicaltrials.gov), comparing 13 children with end-stage kidney disease before initiating PD to 43 children on chronic PD. The angiogenic potential of mesothelial cell-derived CXCL1 was assessed in vitro by measuring endothelial tube formation of human microvascular endothelial cells (HMECs) treated with conditioned medium from human peritoneal mesothelial cells (HPMCs) stimulated to release CXCL1 by treatment with either recombinant IL-17 or PD effluent. We found that the capillary density in the human peritoneum correlated with local CXCL1 expression. Both CXCL1 expression and microvessel density were higher in PD patients than in the age-matched patients prior to initiation of PD. Exposure of HMECs to recombinant CXCL1 or conditioned medium from IL-17-stimulated HPMCs resulted in increased endothelial tube formation, while selective inhibition of mesothelial CXCL1 production by specific antibodies or through silencing of relevant transcription factors abolished the proangiogenic effect of HPMC-conditioned medium. In conclusion, peritoneal mesothelium-derived CXCL1 promotes endothelial tube formation in vitro and associates with peritoneal microvessel density in uremic patients undergoing PD, thus providing novel targets for therapeutic intervention to prolong PD therapy.


Asunto(s)
Quimiocina CXCL1/metabolismo , Neovascularización Patológica/patología , Diálisis Peritoneal/métodos , Peritoneo/irrigación sanguínea , Terapia de Reemplazo Renal/métodos , COVID-19/patología , Células Cultivadas , Niño , Preescolar , Epitelio/metabolismo , Humanos , Lactante , Interleucina-17/metabolismo , Fallo Renal Crónico/terapia , Peritoneo/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Remodelación Vascular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA