Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 526(7572): 212-7, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26416734

RESUMEN

HIV-1 Nef, a protein important for the development of AIDS, has well-characterized effects on host membrane trafficking and receptor downregulation. By an unidentified mechanism, Nef increases the intrinsic infectivity of HIV-1 virions in a host-cell-dependent manner. Here we identify the host transmembrane protein SERINC5, and to a lesser extent SERINC3, as a potent inhibitor of HIV-1 particle infectivity that is counteracted by Nef. SERINC5 localizes to the plasma membrane, where it is efficiently incorporated into budding HIV-1 virions and impairs subsequent virion penetration of susceptible target cells. Nef redirects SERINC5 to a Rab7-positive endosomal compartment and thereby excludes it from HIV-1 particles. The ability to counteract SERINC5 was conserved in Nef encoded by diverse primate immunodeficiency viruses, as well as in the structurally unrelated glycosylated Gag from murine leukaemia virus. These examples of functional conservation and convergent evolution emphasize the fundamental importance of SERINC5 as a potent anti-retroviral factor.


Asunto(s)
VIH-1/fisiología , Interacciones Huésped-Patógeno , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Virión/química , Virión/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/virología , Endosomas/química , Endosomas/metabolismo , Evolución Molecular , Productos del Gen gag/metabolismo , Productos del Gen nef/química , Productos del Gen nef/metabolismo , VIH-1/química , Especificidad del Huésped , Humanos , Virus de la Leucemia Murina/química , Virus de la Leucemia Murina/fisiología , Glicoproteínas de Membrana , Proteínas de la Membrana/análisis , Proteínas de Neoplasias/metabolismo , Primates/virología , Receptores de Superficie Celular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
2.
Proc Natl Acad Sci U S A ; 113(46): 13197-13202, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27803322

RESUMEN

The lentivirus equine infectious anemia virus (EIAV) encodes the small protein S2, a pathogenic determinant that is important for virus replication and disease progression in horses. No molecular function had been linked to this accessory protein. We report that S2 can replace the activity of Negative factor (Nef) in HIV-1 infectivity, being required to antagonize the inhibitory activity of Serine incorporator (SERINC) proteins on Nef-defective HIV-1. Like Nef, S2 excludes SERINC5 from virus particles and requires an ExxxLL motif predicted to recruit the clathrin adaptor, Adaptor protein 2 (AP2). Accordingly, functional endocytic machinery is essential for S2-mediated infectivity enhancement, and S2-mediated enhancement is impaired by inhibitors of clathrin-mediated endocytosis. In addition to retargeting SERINC5 to a late endosomal compartment, S2 promotes host factor degradation. Emphasizing the similarity with Nef, we show that S2 is myristoylated, and, as is compatible with a crucial role in posttranslational modification, its N-terminal glycine is required for anti-SERINC5 activity. EIAV-derived vectors devoid of S2 are less susceptible than HIV-1 to the inhibitory effect of both human and equine SERINC5. We then identified the envelope glycoprotein of EIAV as a determinant that also modulates retroviral susceptibility to SERINC5, indicating that EIAV has a bimodal ability to counteract the host factor. S2 shares no sequence homology with other retroviral factors known to counteract SERINC5. Like the primate lentivirus Nef and the gammaretrovirus glycoGag, the accessory protein from EIAV is an example of a retroviral virulence determinant that independently evolved SERINC5-antagonizing activity. SERINC5 therefore plays a critical role in the interaction of the host with diverse retrovirus pathogens.


Asunto(s)
Proteínas de la Membrana , Proteínas de Neoplasias , Receptores de Superficie Celular , Proteínas Virales , Factores de Virulencia , Línea Celular , VIH-1/fisiología , Humanos , Virus de la Anemia Infecciosa Equina , Glicoproteínas de Membrana , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Replicación Viral
3.
Hum Mol Genet ; 24(11): 3082-91, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25691535

RESUMEN

Temporal lobe epilepsy (TLE) is a common epilepsy syndrome with a complex etiology. Despite evidence for the participation of genetic factors, the genetic basis of TLE remains largely unknown. A role for the galanin neuropeptide in the regulation of epileptic seizures has been established in animal models more than two decades ago. However, until now there was no report of pathogenic mutations in GAL, the galanin-encoding gene, and therefore its role in human epilepsy was not established. Here, we studied a family with a pair of monozygotic twins affected by TLE and two unaffected siblings born to healthy parents. Exome sequencing revealed that both twins carried a novel de novo mutation (p.A39E) in the GAL gene. Functional analysis revealed that the p.A39E mutant showed antagonistic activity against galanin receptor 1 (GalR1)-mediated response, and decreased binding affinity and reduced agonist properties for GalR2. These findings suggest that the p.A39E mutant could impair galanin signaling in the hippocampus, leading to increased glutamatergic excitation and ultimately to TLE. In a cohort of 582 cases, we did not observe any pathogenic mutations indicating that mutations in GAL are a rare cause of TLE. The identification of a novel de novo mutation in a biologically-relevant candidate gene, coupled with functional evidence that the mutant protein disrupts galanin signaling, strongly supports GAL as the causal gene for the TLE in this family. Given the availability of galanin agonists which inhibit seizures, our findings could potentially have direct implications for the development of anti-epileptic treatment.


Asunto(s)
Epilepsia del Lóbulo Temporal/genética , Galanina/genética , Adulto , Animales , Secuencia de Bases , Células CHO , Cricetinae , Cricetulus , Análisis Mutacional de ADN , Estudios de Asociación Genética , Humanos , Mutación Missense , Linaje , Unión Proteica , Transducción de Señal
4.
PLoS Pathog ; 11(7): e1005050, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26181333

RESUMEN

HIV-2 and SIVMAC are AIDS-causing, zoonotic lentiviruses that jumped to humans and rhesus macaques, respectively, from SIVSM-bearing sooty mangabey monkeys. Cross-species transmission events such as these sometimes necessitate virus adaptation to species-specific, host restriction factors such as TRIM5. Here, a new human restriction activity is described that blocks viruses of the SIVSM/SIVMAC/HIV-2 lineage. Human T, B, and myeloid cell lines, peripheral blood mononuclear cells and dendritic cells were 4 to >100-fold less transducible by VSV G-pseudotyped SIVMAC, HIV-2, or SIVSM than by HIV-1. In contrast, transduction of six epithelial cell lines was equivalent to that by HIV-1. Substitution of HIV-1 CA with the SIVMAC or HIV-2 CA was sufficient to reduce HIV-1 transduction to the level of the respective vectors. Among such CA chimeras there was a general trend such that CAs from epidemic HIV-2 Group A and B isolates were the most infectious on human T cells, CA from a 1° sooty mangabey isolate was the least infectious, and non-epidemic HIV-2 Group D, E, F, and G CAs were in the middle. The CA-specific decrease in infectivity was observed with either HIV-1, HIV-2, ecotropic MLV, or ALV Env pseudotypes, indicating that it was independent of the virus entry pathway. As2O3, a drug that suppresses TRIM5-mediated restriction, increased human blood cell transduction by SIVMAC but not by HIV-1. Nonetheless, elimination of TRIM5 restriction activity did not rescue SIVMAC transduction. Also, in contrast to TRIM5-mediated restriction, the SIVMAC CA-specific block occurred after completion of reverse transcription and the formation of 2-LTR circles, but before establishment of the provirus. Transduction efficiency in heterokaryons generated by fusing epithelial cells with T cells resembled that in the T cells, indicative of a dominant-acting SIVMAC restriction activity in the latter. These results suggest that the nucleus of human blood cells possesses a restriction factor specific for the CA of HIV-2/SIVMAC/SIVSM and that cross-species transmission of SIVSM to human T cells necessitated adaptation of HIV-2 to this putative restriction factor.


Asunto(s)
Antivirales/farmacología , Cápside/microbiología , VIH-2/efectos de los fármacos , Leucocitos Mononucleares/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Integración Viral/efectos de los fármacos , Animales , Línea Celular , Células Dendríticas/efectos de los fármacos , Células Dendríticas/virología , VIH-2/genética , VIH-2/inmunología , Humanos , Leucocitos Mononucleares/inmunología , Virus de la Inmunodeficiencia de los Simios/genética , Linfocitos T/efectos de los fármacos , Linfocitos T/virología
5.
Retrovirology ; 12: 53, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26105074

RESUMEN

BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) has evolved a complex strategy to overcome the immune barriers it encounters throughout an organism thanks to its viral infectivity factor (Vif), a key protein for HIV-1 infectivity and in vivo pathogenesis. Vif interacts with and promotes "apolipoprotein B mRNA-editing enzyme-catalytic, polypeptide-like 3G" (A3G) ubiquitination and subsequent degradation by the proteasome, thus eluding A3G restriction activity against HIV-1. RESULTS: We found that cellular histone deacetylase 6 (HDAC6) directly interacts with A3G through its C-terminal BUZ domain (residues 841-1,215) to undergo a cellular co-distribution along microtubules and cytoplasm. The HDAC6/A3G complex occurs in the absence or presence of Vif, competes for Vif-mediated A3G degradation, and accounts for A3G steady-state expression level. In fact, HDAC6 directly interacts with and promotes Vif autophagic clearance, thanks to its C-terminal BUZ domain, a process requiring the deacetylase activity of HDAC6. HDAC6 degrades Vif without affecting the core binding factor ß (CBF-ß), a Vif-associated partner reported to be key for Vif- mediated A3G degradation. Thus HDAC6 antagonizes the proviral activity of Vif/CBF-ß-associated complex by targeting Vif and stabilizing A3G. Finally, in cells producing virions, we observed a clear-cut correlation between the ability of HDAC6 to degrade Vif and to restore A3G expression, suggesting that HDAC6 controls the amount of Vif incorporated into nascent virions and the ability of HIV-1 particles of being infectious. This effect seems independent on the presence of A3G inside virions and on viral tropism. CONCLUSIONS: Our study identifies for the first time a new cellular complex, HDAC6/A3G, involved in the autophagic degradation of Vif, and suggests that HDAC6 represents a new antiviral factor capable of controlling HIV-1 infectiveness by counteracting Vif and its functions.


Asunto(s)
Autofagia , Citidina Desaminasa/metabolismo , VIH-1/fisiología , Histona Desacetilasas/metabolismo , Interacciones Huésped-Patógeno , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasa APOBEC-3G , Línea Celular , Células Epiteliales/virología , Histona Desacetilasa 6 , Humanos , Unión Proteica , Mapeo de Interacción de Proteínas , Proteolisis
6.
Retrovirology ; 10: 39, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575248

RESUMEN

BACKGROUND: HIV-1 entry into target lymphocytes requires the activity of actin adaptors that stabilize and reorganize cortical F-actin, like moesin and filamin-A. These alterations are necessary for the redistribution of CD4-CXCR4/CCR5 to one pole of the cell, a process that increases the probability of HIV-1 Envelope (Env)-CD4/co-receptor interactions and that generates the tension at the plasma membrane necessary to potentiate fusion pore formation, thereby favouring early HIV-1 infection. However, it remains unclear whether the dynamic processing of F-actin and the amount of cortical actin available during the initial virus-cell contact are required to such events. RESULTS: Here we show that gelsolin restructures cortical F-actin during HIV-1 Env-gp120-mediated signalling, without affecting cell-surface expression of receptors or viral co-receptor signalling. Remarkably, efficient HIV-1 Env-mediated membrane fusion and infection of permissive lymphocytes were impaired when gelsolin was either overexpressed or silenced, which led to a loss or gain of cortical actin, respectively. Indeed, HIV-1 Env-gp120-induced F-actin reorganization and viral receptor capping were impaired under these experimental conditions. Moreover, gelsolin knockdown promoted HIV-1 Env-gp120-mediated aberrant pseudopodia formation. These perturbed-actin events are responsible for the inhibition of early HIV-1 infection. CONCLUSIONS: For the first time we provide evidence that through its severing of cortical actin, and by controlling the amount of actin available for reorganization during HIV-1 Env-mediated viral fusion, entry and infection, gelsolin can constitute a barrier that restricts HIV-1 infection of CD4+ lymphocytes in a pre-fusion step. These findings provide important insights into the complex molecular and actin-associated dynamics events that underlie early viral infection. Thus, we propose that gelsolin is a new factor that can limit HIV-1 infection acting at a pre-fusion step, and accordingly, cell-signals that regulate gelsolin expression and/or its actin-severing activity may be crucial to combat HIV-1 infection.


Asunto(s)
Actinas/antagonistas & inhibidores , Antivirales/metabolismo , Linfocitos T CD4-Positivos/inmunología , Gelsolina/metabolismo , VIH-1/inmunología , Receptores del VIH/antagonistas & inhibidores , Internalización del Virus , Antivirales/uso terapéutico , Linfocitos T CD4-Positivos/virología , Línea Celular , VIH-1/fisiología , Humanos , Transducción de Señal
7.
J Transl Med ; 10: 144, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22784600

RESUMEN

Europrise is a Network of Excellence supported by the European Commission within the 6th Framework programme from 2007 to 2012. The Network has involved over 50 institutions from 13 European countries together with 3 industrial partners and 6 African countries. The Network encompasses an integrated program of research, training, dissemination and advocacy within the field of HIV vaccines and microbicides. A central and timely theme of the Network is the development of the unique concept of co-usage of vaccines and microbicides. Training of PhD students has been a major task, and some of these post-graduate students have here summarized novel ideas emanating from presentations at the last annual Europrise meeting in Prague. The latest data and ideas concerning HIV vaccine and microbicide studies are included in this review; these studies are so recent that the majority have yet to be published. Data were presented and discussed concerning novel immunisation strategies; microbicides and PrEP (alone and in combination with vaccines); mucosal transmission of HIV/SIV; mucosal vaccination; novel adjuvants; neutralizing antibodies; innate immune responses; HIV/SIV pathogenesis and disease progression; new methods and reagents. These - necessarily overlapping topics - are comprehensively summarised by the Europrise students in the context of other recent exciting data.


Asunto(s)
Vacunas contra el SIDA , Fármacos Anti-VIH/uso terapéutico , Diseño de Fármacos , Infecciones por VIH/inmunología , Animales , Infecciones por VIH/prevención & control , Humanos
8.
J Transl Med ; 9: 40, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21486446

RESUMEN

Novel, exciting intervention strategies to prevent infection with HIV have been tested in the past year, and the field is rapidly evolving. EUROPRISE is a network of excellence sponsored by the European Commission and concerned with a wide range of activities including integrated developmental research on HIV vaccines and microbicides from discovery to early clinical trials. A central and timely theme of the network is the development of the unique concept of co-usage of vaccines and microbicides. This review, prepared by the PhD students of the network captures much of the research ongoing between the partners. The network is in its 5th year and involves over 50 institutions from 13 European countries together with 3 industrial partners; GSK, Novartis and Sanofi-Pasteur. EUROPRISE is involved in 31 separate world-wide trials of Vaccines and Microbicides including 6 in African countries (Tanzania, Mozambique, South Africa, Kenya, Malawi, Rwanda), and is directly supporting clinical trials including MABGEL, a gp140-hsp70 conjugate trial and HIVIS, vaccine trials in Europe and Africa.


Asunto(s)
Vacunas contra el SIDA/inmunología , Antiinfecciosos/inmunología , Diseño de Fármacos , Animales , Formación de Anticuerpos/inmunología , Ensayos Clínicos como Asunto , Humanos
10.
Sci Rep ; 7: 40037, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28051183

RESUMEN

HLA-C has been demonstrated to associate with HIV-1 envelope glycoprotein (Env). Virions lacking HLA-C have reduced infectivity and increased susceptibility to neutralizing antibodies. Like all others MHC-I molecules, HLA-C requires ß2-microglobulin (ß2m) for appropriate folding and expression on the cell membrane but this association is weaker, thus generating HLA-C free-chains on the cell surface. In this study, we deepen the understanding of HLA-C and Env association by showing that HIV-1 specifically increases the amount of HLA-C free chains, not bound to ß2m, on the membrane of infected cells. The association between Env and HLA-C takes place at the cell membrane requiring ß2m to occur. We report that the enhanced infectivity conferred to HIV-1 by HLA-C specifically involves HLA-C free chain molecules that have been correctly assembled with ß2m. HIV-1 Env-pseudotyped viruses produced in the absence of ß2m are less infectious than those produced in the presence of ß2m. We hypothesize that the conformation and surface expression of HLA-C molecules could be a discriminant for the association with Env. Binding stability to ß2m may confer to HLA-C the ability to preferentially act either as a conventional immune-competent molecule or as an accessory molecule involved in HIV-1 infectivity.


Asunto(s)
Membrana Celular/virología , Infecciones por VIH/virología , VIH-1/crecimiento & desarrollo , Antígenos HLA-C/metabolismo , Interacciones Huésped-Patógeno , Microglobulina beta-2/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Células HEK293 , Células HeLa , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA