RESUMEN
BACKGROUND: We describe two unrelated patients who display similar clinical features including telangiectasia, ectodermal dysplasia, brachydactyly and congenital heart disease. METHODS: We performed trio whole exome sequencing and functional analysis using in vitro kinase assays with recombinant proteins. RESULTS: We identified two different de novo mutations in protein kinase D1 (PRKD1, NM_002742.2): c.1774G>C, p.(Gly592Arg) and c.1808G>A, p.(Arg603His), one in each patient. PRKD1 (PKD1, HGNC:9407) encodes a kinase that is a member of the protein kinase D (PKD) family of serine/threonine protein kinases involved in diverse cellular processes such as cell differentiation and proliferation and cell migration as well as vesicle transport and angiogenesis. Functional analysis using in vitro kinase assays with recombinant proteins showed that the mutation c.1808G>A, p.(Arg603His) represents a gain-of-function mutation encoding an enzyme with a constitutive, lipid-independent catalytic activity. The mutation c.1774G>C, p.(Gly592Arg) in contrast shows a defect in substrate phosphorylation representing a loss-of-function mutation. CONCLUSION: The present cases represent a syndrome, which associates symptoms from several different organ systems: skin, teeth, bones and heart, caused by heterozygous de novo mutations in PRKD1 and expands the clinical spectrum of PRKD1 mutations, which have hitherto been linked to syndromic congenital heart disease and limb abnormalities.
Asunto(s)
Braquidactilia/genética , Displasia Ectodérmica/genética , Mutación , Proteína Quinasa C/genética , Telangiectasia/genética , Adolescente , Braquidactilia/enzimología , Displasia Ectodérmica/enzimología , Femenino , Células HEK293 , Humanos , Masculino , Síndrome , Telangiectasia/enzimología , Secuenciación del Exoma , Adulto JovenRESUMEN
The identification of monogenic causes for cornification disorders has enhanced our understanding of epidermal differentiation and skin barrier function. Autosomal dominant lamellar ichthyosis is a rare condition, and ASPRV1 was the only gene linked to autosomal dominant lamellar ichthyosis to date. We identified a heterozygous variant (ENST00000686631.1:c.1372G>T, p.[Val458Phe]) in the NKPD1 gene in 7 individuals from a 4-generation German pedigree with generalized lamellar ichthyosis by whole-exome sequencing. Segregation analysis confirmed its presence in affected individuals, resulting in a logarithm of the odds score of 3.31. NKPD1 encodes the NKPD1 protein, implicated in the plasma membrane; its role in human disease is as yet unknown. Skin histology showed moderate acanthosis and compact orthohyperkeratosis, and the ultrastructure differed clearly from that in ASPRV1-autosomal dominant lamellar ichthyosis. Although NKPD1 mRNA expression increased during keratinocyte differentiation, stratum corneum ceramides exhibited no significant changes. However, affected individuals showed an elevated ratio of protein-bound ceramides to omega-esterified ceramides. This highlights NKPD1's role in autosomal dominant lamellar ichthyosis, impacting ceramide metabolism and skin lipid barrier formation, as demonstrated through functional characterization.
RESUMEN
BACKGROUND: The extracellular signal-regulated kinase (ERK) pathway regulates cell growth, and is hyper-activated and associated with drug resistance in hepatocellular carcinoma (HCC). Metabolic pathways are profoundly dysregulated in HCC. Whether an altered metabolic state is linked to activated ERK pathway and drug response in HCC is unaddressed. METHODS: We deprived HCC cells of glutamine to induce metabolic alterations and performed various assays, including metabolomics (with 13C-glucose isotope tracing), microarray analysis, and cell proliferation assays. Glutamine-deprived cells were also treated with kinase inhibitors (e.g. Sorafenib, Erlotinib, U0126 amongst other MEK inhibitors). We performed bioinformatics analysis and stratification of HCC tumour microarrays to determine upregulated ERK gene signatures in patients. FINDINGS: In a subset of HCC cells, the withdrawal of glutamine triggers a severe metabolic alteration and ERK phosphorylation (pERK). This is accompanied by resistance to the anti-proliferative effect of kinase inhibitors, despite pERK inhibition. High intracellular serine is a consistent feature of an altered metabolic state and contributes to pERK induction and the kinase inhibitor resistance. Blocking the ERK pathway facilitates cell proliferation by reprogramming metabolism, notably enhancing aerobic glycolysis. We have identified 24 highly expressed ERK gene signatures that their combined expression strongly indicates a dysregulated metabolic gene network in human HCC tissues. INTERPRETATION: A severely compromised metabolism lead to ERK pathway induction, and primes some HCC cells to pro-survival phenotypes upon ERK pathway blockade. Our findings offer novel insights for understanding, predicting and overcoming drug resistance in liver cancer patients. FUND: DFG, BMBF and Sino-German Cooperation Project.
Asunto(s)
Carcinoma Hepatocelular/metabolismo , Resistencia a Antineoplásicos , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas , Antineoplásicos/toxicidad , Carcinoma Hepatocelular/genética , Proliferación Celular , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Metaboloma , Inhibidores de Proteínas Quinasas/toxicidad , TranscriptomaRESUMEN
The pyruvate dehydrogenase complex (PDC) is an important gatekeeper enzyme connecting glycolysis to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, it has a strong impact on the glycolytic flux as well as the metabolic phenotype of a cell. PDC activity is regulated via reversible phosphorylation of three serine residues on the pyruvate dehydrogenase (PDH) E1α subunit. Phosphorylation of any of these residues by the PDH kinases (PDKs) leads to a strong decrease in PDC activity. Under hypoxia, the inactivation of the PDC has been described to be dependent on the hypoxia-inducible factor 1 (HIF-1)-induced PDK1 protein upregulation. In this study, we show in two hepatocellular carcinoma cell lines (HepG2 and JHH-4) that, during the adaptation to hypoxia, PDH is already phosphorylated at time points preceding HIF-1-mediated transcriptional events and PDK1 protein upregulation. Using siRNAs and small molecule inhibitor approaches, we show that this inactivation of PDC is independent of HIF-1α expression but that the PDKs need to be expressed and active. Furthermore, we show that reactive oxygen species might be important for the induction of this PDH phosphorylation since it correlates with the appearance of an altered redox state in the mitochondria and is also inducible by H2O2 treatment under normoxic conditions. Overall, these results show that neither HIF-1 expression nor PDK1 upregulation is necessary for the phosphorylation of PDH during the first hours of the adaptation to hypoxia.
RESUMEN
BACKGROUND: Hypoxia and inflammation have been identified as hallmarks of cancer. A majority of hepatocellular carcinomas are preceded by hepatitis B- or C-related chronic infections suggesting that liver cancer development is promoted by an inflammatory microenvironment. The inflammatory cytokine oncostatin M (OSM) was shown to induce the expression of hypoxia-inducible factor-1 α (HIF-1 α) under normoxic conditions in hepatocytes and hepatoma cells. HIF-1 α is known to orchestrate the expression of numerous genes, many of which code for metabolic enzymes that play key roles in the adaptation of cellular metabolism to low oxygen tension. RESULTS: Here, we show that OSM-induced upregulation of HIF-1 α reprograms cellular metabolism in three clones of the human hepatocyte cell line PH5CH (PH5CH1, PH5CH7, and PH5CH8) towards a hypoxia-like metabolic phenotype but has no significant effect on cellular metabolism of HepG2 and JHH-4 hepatoma cells. Although we observed only minor changes in glucose uptake and lactate secretion in PH5CH8 upon OSM treatment, we identified more pronounced changes in intracellular fluxes based on stable isotope labeling experiments. In particular, glucose oxidation in the tricarboxylic acid (TCA) cycle is reduced through pyruvate dehydrogenase kinase 1 (PDK1)-mediated inhibition of the pyruvate dehydrogenase complex, thereby reducing the oxidative TCA cycle flux. As a result of the impaired mitochondrial glucose and glutamine oxidation, the reductive isocitrate dehydrogenase flux was increased. CONCLUSIONS: We provide evidence that connects the inflammatory mediator OSM to a hypoxia-like metabolic phenotype. In the human hepatocyte cell line PH5CH, OSM-mediated upregulation of HIF-1 α and PDK1 can induce hypoxia-like metabolic changes, although to a lesser extent than hypoxia itself. Since PDK1 is overexpressed in several cancers, it might provide a causal link between chronic inflammation and malignant cellular transformation.