Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Intervalo de año de publicación
1.
Pulm Pharmacol Ther ; 50: 100-110, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29702255

RESUMEN

AIM: This study assessed pulmonary outcomes generated by inhibiting key enzymes of sphingolipid metabolism pathways related to ceramide synthesis in a murine model of lung injury induced by lipopolysaccharide (LPS). METHODS: C57BL/6 male adult mice received LPS intratracheally and the expressions of acid sphingomyelinase (ASM), neutral sphingomyelinase (NSM), serine palmitoyl transferase (SPT) and dihydroceramide synthase (DS) were assessed at 2, 4, 6, 12 and 24 h after LPS instillation in lung homogenate (n = 30). The pharmacological inhibition of ASM, NSM, SPT and DS were assayed in other mice groups by three different doses of desipramine, GW4869, myriocin and fumonisin, respectively (n = 90). Their most effective doses were administered intraperitoneally 1 or 2 h before LPS to different animal groups (n = 120). Mice underwent determination of pulmonary mechanics, lung histopathological aspects and apoptosis. RESULTS: The expression levels of the enzymes reached their peak at 2-4 h after LPS administration. ASM inhibition attenuated alveolar collapse and GW4869 decreased lung elastance, proinflammatory cytokines' levels and was more effective to improve alveolar collapse than desipramine. On the other hand, SPT blockage aggravated lung lesion and no effects it was observed with fumonisin. Moreover, simultaneous administration of inhibitors (desipramine + GW4869, myriocin + fumonisin and all inhibitors together) resulted in no changes. CONCLUSION: Blockage of sphingomyelinases and the de novo pathways improved and aggravated lung injury, respectively, putatively suggesting specific targets to therapeutic strategies in LPS-induced lung injury.


Asunto(s)
Lipopolisacáridos/farmacología , Lesión Pulmonar/inducido químicamente , Esfingolípidos/metabolismo , Compuestos de Anilina/farmacología , Animales , Compuestos de Bencilideno/farmacología , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Pulmón/efectos de los fármacos , Pulmón/enzimología , Pulmón/metabolismo , Pulmón/patología , Lesión Pulmonar/enzimología , Lesión Pulmonar/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Serina C-Palmitoiltransferasa/antagonistas & inhibidores , Serina C-Palmitoiltransferasa/metabolismo , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/metabolismo
2.
Anesth Analg ; 127(3): 784-791, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29933268

RESUMEN

BACKGROUND: Recruitment maneuver and positive end-expiratory pressure (PEEP) can be used to counteract intraoperative anesthesia-induced atelectasis. Variable ventilation can stabilize lung mechanics by avoiding the monotonic tidal volume and protect lung parenchyma as tidal recruitment is encompassed within the tidal volume variability. METHODS: Forty-nine (7 per group) male Wistar rats were anesthetized, paralyzed, and mechanically ventilated. A recruitment maneuver followed by stepwise decremental PEEP titration was performed while continuously estimating respiratory system mechanics using recursive least squares. After a new recruitment, animals were ventilated for 2 hours in volume-control with monotonic (VCV) or variable (VV) tidal volumes. PEEP was adjusted at a level corresponding to the minimum elastance or 2 cm H2O above or below this level. Lungs were harvested for histologic analysis (left lung) and cytokines measurement (right lung). Seven animals were euthanized before the first recruitment as controls. RESULTS: A time-dependent increase in respiratory system elastance was observed and significantly minimized by PEEP (P < .001). Variable ventilation attenuated the amount of concentrations of proinflammatory mediators in lung homogenate: neutrophil cytokine-induced neutrophil chemoattractant 1 (VV = 40 ± 5 and VCV = 57 ± 8 pg/mg; P < .0001) and interleukin-1ß (VV = 59 ± 25 and VCV = 261 ± 113 pg/mg; P < .0001). Variable ventilation was also associated with lower structural lung parenchyma damage. Significant reductions in air fraction at dorsal and caudal lung regions were observed in all ventilated animals (P < .001). CONCLUSIONS: Variable ventilation was more protective than conventional ventilation within the applied PEEP levels.


Asunto(s)
Anestésicos Disociativos/administración & dosificación , Neumonía/metabolismo , Neumonía/patología , Respiración con Presión Positiva/métodos , Mecánica Respiratoria/fisiología , Animales , Pulmón/metabolismo , Pulmón/patología , Masculino , Neumonía/etiología , Respiración con Presión Positiva/efectos adversos , Respiración con Presión Positiva/tendencias , Ratas , Ratas Wistar , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Respiración Artificial/tendencias , Volumen de Ventilación Pulmonar/fisiología
3.
Lung ; 196(3): 335-342, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29435738

RESUMEN

PURPOSE: We compared respiratory mechanics between the positive end-expiratory pressure of minimal respiratory system elastance (PEEPminErs) and three levels of PEEP during low-tidal-volume (6 mL/kg) ventilation in rats. METHODS: Twenty-four rats were anesthetized, paralyzed, and mechanically ventilated. Airway pressure (Paw), flow (F), and volume (V) were fitted by a linear single compartment model (LSCM) Paw(t) = Ers × V(t) + Rrs × F(t) + PEEP or a volume- and flow-dependent SCM (VFDSCM) Paw(t) = (E1 + E2 × V(t)) × V(t) + (K1 + K2 × |F(t)|) × F(t) + PEEP, where Ers and Rrs are respiratory system elastance and resistance, respectively; E1 and E2× V are volume-independent and volume-dependent Ers, respectively; and K1 and K2 × F are flow-independent and flow-dependent Rrs, respectively. Animals were ventilated for 1 h at PEEP 0 cmH2O (ZEEP); PEEPminErs; 2 cmH2O above PEEPminErs (PEEPminErs+2); or 4 cmH2O above PEEPminErs (PEEPminErs+4). Alveolar tidal recruitment/derecruitment and overdistension were assessed by the index %E2 = 100 × [(E2 × VT)/(E1 + |E2| × VT)], and alveolar stability by the slope of Ers(t). RESULTS: %E2 varied between 0 and 30% at PEEPminErs in most respiratory cycles. Alveolar Tidal recruitment/derecruitment (%E2 < 0) and overdistension (%E2 > 30) were predominant in the absence of PEEP and in PEEP levels higher than PEEPminErs, respectively. The slope of Ers(t) was different from zero in all groups besides PEEPminErs+4. CONCLUSIONS: PEEPminErs presented the best compromise between alveolar tidal recruitment/derecruitment and overdistension, during 1 h of low-VT mechanical ventilation.


Asunto(s)
Elasticidad/fisiología , Pulmón/fisiología , Respiración con Presión Positiva/métodos , Mecánica Respiratoria/fisiología , Anestesia , Animales , Ratas , Respiración Artificial/métodos , Volumen de Ventilación Pulmonar
4.
Pulm Pharmacol Ther ; 41: 11-18, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27599597

RESUMEN

Short-term cigarette smoke (CS) exposure does not cause emphysema; however, some pathogenesis hallmarks are maintained, such as oxidative stress and inflammation. This study aimed to test the efficacy of eucalyptol against short-term CS exposure in mice. C57BL/6 mice were exposed to 12 cigarettes per day for 5 days (CS group). The control group was exposed to sham smoking. Three groups of mice exposed to CS were treated to different concentrations of eucalyptol (1, 3, 10 mg/mL) via inhalation (15 min/daily) for 5 days (CS + 1 mg, CS+3 mg and CS+10 mg groups). CS group and control one were sham treated by using vehicle. The anti-inflammatory and antioxidant effects of eucalyptol were assessed 24 h after the last CS exposure by determining cell counts, measuring cytokine production and performing western blotting, biochemical and histological analyses. Eucalyptol at 3 mg/mL and 10 mg/mL concentrations reduced total leukocyte numbers compared to the CS group (p < 0.001), while macrophage numbers were reduced at all concentrations (p < 0.001). Myeloperoxidase, used as neutrophil marker, was reduced at 3 mg/mL (p < 0.01) and 10 mg/mL (p < 0.05) concentrations. Eucalyptol reduced cytokine levels (IL-1ß, IL-6 and KC) at 3 mg/mL and 10 mg/mL concentrations (p < 0.01) compared to the CS group. The exception was TNF-α, with a reduction only at 10 mg/mL of eucalyptol compared to the CS group (p < 0.001). Additionally, eucalyptol decreased the NF-kappa B p65 subunit at 3 mg/mL and 10 mg/mL compared to the CS group (p < 0.01). Regarding oxidative stress, eucalyptol reduced reactive oxygen species, superoxide dismutase, catalase and malondialdehyde, mainly at 3 mg/mL and 10 mg/mL concentrations compared to the CS group (at least p < 0.05), parallel to reduced glutathione levels at the same concentrations (p < 0.001). Furthermore, treatment with eucalyptol attenuated CS-induced histopathological alterations. Collectively, these results indicate that eucalyptol acts through a mechanism involving decreased oxidative stress, inflammation and the NF-kappa B p65 subunit against CS-induced acute lung inflammation. Thus, eucalyptol may be a potential agent in the treatment of pulmonary inflammation caused by CS in humans.


Asunto(s)
Ciclohexanoles/farmacología , Monoterpenos/farmacología , Estrés Oxidativo/efectos de los fármacos , Neumonía/prevención & control , Fumar/efectos adversos , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Ciclohexanoles/administración & dosificación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Eucaliptol , Inflamación/patología , Inflamación/prevención & control , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Monoterpenos/administración & dosificación , Neutrófilos/metabolismo , Peroxidasa/metabolismo , Neumonía/etiología , Especies Reactivas de Oxígeno/metabolismo , Humo/efectos adversos , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Biochim Biophys Acta ; 1840(1): 199-208, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24076233

RESUMEN

BACKGROUND: Pulmonary emphysema is characterized by the loss of lung architecture. Our hypothesis is that the inhibition of 5-lipoxygenase (5-LO) production may be an important strategy to reduce inflammation, oxidative stress, and metalloproteinases in lung tissue resulting from cigarette smoke (CS)-induced emphysema. METHODS: 5-LO knockout (129S2-Alox5(tm1Fun)/J) and wild-type (WT) mice (129S2/SvPas) were exposed to CS for 60days. Mice exposed to ambient air were used as Controls. Oxidative, inflammatory, and proteolytic markers were analyzed. RESULTS: The alveolar diameter was decreased in CS 5-LO(-/-) mice when compared with the WT CS group. The CS exposure resulted in less pronounced pulmonary inflammation in the CS 5-LO(-/-) group. The CS 5-LO(-/-) group showed leukotriene B4 values comparable to those of the Control group. The expression of MMP-9 was decreased in the CS 5-LO(-/-) group when compared with the CS WT group. The expression of superoxide dismutase, catalase, and glutathione peroxidase were decreased in the CS 5-LO(-/-) group when compared with the Control group. The protein expression of nuclear factor (erythroid-derived 2)-like 2 was reduced in the CS 5-LO(-/-) group when compared to the CS WT group. CONCLUSION: In conclusion, we show for the first time that 5-LO deficiency protects 129S2 mice against emphysema caused by CS. We suggest that the main mechanism of pathogenesis in this model involves the imbalance between proteases and antiproteases, particularly the association between MMP-9 and TIMP-1. General significance This study demonstrates the influence of 5-LO mediated oxidative stress, inflammation, and proteolytic markers in CS exposed mice.


Asunto(s)
Araquidonato 5-Lipooxigenasa/fisiología , Metaloproteinasa 9 de la Matriz/metabolismo , Estrés Oxidativo , Neumonía/prevención & control , Enfisema Pulmonar/prevención & control , Humo/efectos adversos , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Animales , Western Blotting , Lavado Broncoalveolar , Ensayo de Inmunoadsorción Enzimática , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ratones Noqueados , Oxidación-Reducción , Neumonía/genética , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/genética , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Pruebas de Función Respiratoria , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Inhibidor Tisular de Metaloproteinasa-1/genética
6.
Respir Physiol Neurobiol ; 310: 103988, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36423821

RESUMEN

Centipedic Acid (CPA), a natural diterpene from Egletes viscosa, an endemic species of the Caatinga biome, has shown antioxidant and anti-inflammatory properties. However, no report on the CPA on respiratory system mechanics has been so far advanced. We aimed to investigate the dose-response behavior of CPA on E. coli lipopolysaccharide (LPS)-triggered acute lung injury (ALI). Forty-eight C57BL/6 mice were randomly divided into six groups: control (SS), induced to ALI (LPS), 4 groups induced to ALI pre-treated with 12.5, 25, 50 and 100 mg/kg of CPA (CPA12.5, CPA25, CPA50 and CPA100 groups). CPA 100 mg/kg could prevent inflammatory cell infiltration, alveolar collapse, changes in tissue micromechanics and lung function (airway resistance, tissue elastance, tissue resistance and Static compliance). These results indicate preventive potential of this compound in the installation of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Animales , Ratones , Modelos Animales de Enfermedad , Escherichia coli , Ratones Endogámicos C57BL , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Pulmón
7.
Toxicol Pathol ; 40(5): 731-41, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22549973

RESUMEN

The development of bleomycin-induced pulmonary fibrosis (BLEO-PF) has been associated with differences in genetic background and oxidative stress status. The authors' aim was to investigate the crosstalk between the redox profile, lung histology, and respiratory function in BLEO-PF in C57BL/6, DBA/2, and BALB/c mice. BLEO-PF was induced with a single intratracheal dose of bleomycin (0.1 U/mouse). Twenty-one days after bleomycin administration, the mortality rate was over 50% in C57BL/6 and 20% in DBA/2 mice, and BLEO-PF was not observed in BALB/c. There was an increase in lung static elastance (p < .001), viscoelastic/inhomogeneous pressure (p < .05), total pressure drop after flow interruption (p < .01), and ΔE (p < .05) in C57BL/6 mice. The septa volume increased in C57BL/6 (p < .05) and DBA/2 (p < .001). The levels of IFN-γ were reduced in C57BL/6 mice (p < .01). OH-proline levels were increased in C57BL/6 and DBA/2 mice (p < .05). SOD activity and expression were reduced in C57BL/6 and DBA/2 mice (p < .001 and p < .001, respectively), whereas catalase was reduced in all strains 21 days following bleomycin administration compared with the saline groups (C57BL/6: p < .05; DBA/2: p < .01; BALB/c: p < .01). GPx activity and GPx1/2 expression decreased in C57BL/6 (p < .001). The authors conclude that BLEO-PF resistance may also be related to the activity and expression of SOD in BALB/c mice.


Asunto(s)
Bleomicina/efectos adversos , Estrés Oxidativo , Fibrosis Pulmonar/patología , Fenómenos Fisiológicos Respiratorios/efectos de los fármacos , Animales , Bleomicina/metabolismo , Regulación de la Expresión Génica , Glutatión Peroxidasa/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Oxidación-Reducción , Fibrosis Pulmonar/inducido químicamente , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa GPX1
8.
Acta Physiol (Oxf) ; 234(1): e13708, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34185958

RESUMEN

AIM: We aimed to evaluate whether the streptozotocin-induced diabetic model can generate lung functional, histological and biochemical impairments and whether moderate exercise can prevent these changes. METHODS: Wistar rats were assigned to control (CTRL), exercise (EXE), diabetic (D) and diabetic with exercise (D+EXE) groups. We used the n5-STZ model of diabetes mellitus triggered by a single injection of streptozotocin (STZ, 120 mg/kg b.w., i.p.) in newborn rats on their 5th day of life. EXE and D+EXE rats were trained by running on a motorized treadmill, 5 days a week for 9 weeks. Blood glucose, body weight, food intake, exercise capacity, lung mechanics, morphology, and antioxidant enzymatic activity were analysed. RESULTS: On the 14th week of life, diabetic rats exhibited a significant impairment in post-prandial glycaemia, glucose tolerance, body weight, food intake, lung function (tissue viscance, elastance, Newtonian resistance and hysteresis), morphological parameters, redox balance and exercise capacity. Physical training completely prevented the diabetes-induced alterations, except for those on fasting blood glucose, which nevertheless remained stable. CONCLUSIONS: Mild diabetes in n5-STZ-treated rats jeopardized pulmonary mechanics, morphology and redox balance, which confirms the occurrence of diabetes-induced pneumopathy. Moreover, moderate exercise completely prevented all diabetes-induced respiratory alterations.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Condicionamiento Físico Animal , Animales , Glucemia , Pulmón , Ratas , Ratas Wistar , Estreptozocina
9.
Clin Nucl Med ; 47(12): 1019-1025, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36026599

RESUMEN

PURPOSE: We quantified lung glycolytic metabolic activity, clinical symptoms and inflammation, coagulation, and endothelial activation biomarkers in 2019 coronavirus disease (COVID-19) pneumonia survivors. METHODS: Adults previously hospitalized with moderate to severe COVID-19 pneumonia were prospectively included. Subjects filled out a questionnaire on clinical consequences, underwent chest CT and 18 F-FDG PET/CT, and provided blood samples on the same day. Forty-five volunteers served as control subjects. Analysis of CT images and quantitative voxel-based analysis of PET/CT images were performed for both groups. 18 F-FDG uptake in the whole-lung volume and in high- and low-attenuation areas was calculated and normalized to liver values. Quantification of plasma markers of inflammation (interleukin 6), d -dimer, and endothelial cell activation (angiopoietins 1 and 2, vascular cell adhesion molecule 1, and intercellular adhesion molecule 1) was also performed. RESULTS: We enrolled 53 COVID-19 survivors (62.3% were male; median age, 50 years). All survivors reported at least 1 persistent symptom, and 41.5% reported more than 6 symptoms. The mean lung density was greater in survivors than in control subjects, and more metabolic activity was observed in normal and dense lung areas, even months after symptom onset. Plasma proinflammatory, coagulation, and endothelial activation biomarker concentrations were also significantly higher in survivors. CONCLUSION: We observed more metabolic activity in areas of high and normal lung attenuation several months after moderate to severe COVID-19 pneumonia. In addition, plasma markers of thromboinflammation and endothelial activation persisted. These findings may have implications for our understanding of the in vivo pathogenesis and long-lasting effects of COVID-19 pneumonia.


Asunto(s)
COVID-19 , Neumonía , Trombosis , Adulto , Masculino , Humanos , Persona de Mediana Edad , Femenino , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , COVID-19/diagnóstico por imagen , Inflamación/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Biomarcadores , Sobrevivientes
10.
Environ Toxicol Pharmacol ; 93: 103887, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35598755

RESUMEN

Microcystin-LR (MC-LR) is a potent cyanotoxin that can reach several organs. However subacute exposure to sublethal doses of MC-LR has not yet well been studied. Herein, we evaluated the outcomes of subacute and sublethal MC-LR exposure on lungs. Male BALB/c mice were exposed to MC-LR by gavage (30 µg/kg) for 20 consecutive days, whereas CTRL mice received filtered water. Respiratory mechanics was not altered in MC-LR group, but histopathology disclosed increased collagen deposition, immunological cell infiltration, and higher percentage of collapsed alveoli. Mitochondrial function was extensively affected in MC-LR animals. Additionally, a direct in vitro titration of MC-LR revealed impaired mitochondrial function. In conclusion, MC-LR presented an intense deleterious effect on lung mitochondrial function and histology. Furthermore, MC-LR seems to exert an oligomycin-like effect in lung mitochondria. This study opens new perspectives for the understanding of the putative pulmonary initial mechanisms of damage resulting from oral MC-LR intoxication.


Asunto(s)
Microcistinas , Mitocondrias , Animales , Ingestión de Alimentos , Pulmón , Masculino , Toxinas Marinas , Ratones , Microcistinas/metabolismo , Microcistinas/toxicidad , Oligomicinas/metabolismo , Oligomicinas/farmacología
11.
Inhal Toxicol ; 23(14): 918-26, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22122305

RESUMEN

The aim of the present study was to investigate the involvement of oxidative stress in acute lung injury (ALI) induced by lipopolysaccharide (LPS) and its effects upon cell structure, function and inflammation. In total, 108 male C57BL/6 mice were divided into seven groups: CTR Group (50 µL of saline) administered intratracheally (i.t.), LPS 6 h (10 µg of LPS - i.t.), LPS 12 h (10 µg of LPS - i.t.), LPS 24 h (10 µg of LPS - i.t.), LPS 48 h (10 µg of LPS - i.t.), LPS 24 h (10 µg - i.t.) + NAC 40 mg/kg (gavage) and 24 h LPS (10 µg - i.t.) + NAC 100 mg/kg (gavage). The antioxidant treatment protected the lungs from stress in the first 12 h, but significant oxidative stress induction was observed at the 24-hour time point, and, after 48 h, there was no protection exerted by the antioxidant treatment. NAC (N-acetylcysteine) reversed the elastance parameters, and ΔP1 and ΔP2 compared with 24 h LPS alone. NAC reduced the number of inflammatory cells in histology analysis when compared with the 24 h LPS alone-treated group. NAC also inhibited the transcription of NFκB, IL-6, TNF-α and COX2 usually induced by LPS. Our results suggest that oxidative stress plays an important role in structural, functional and inflammatory responses in the ALI model.


Asunto(s)
Acetilcisteína/farmacología , Lesión Pulmonar Aguda/inducido químicamente , Antioxidantes/farmacología , Lipopolisacáridos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/fisiopatología , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Catalasa/metabolismo , Citocinas/genética , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos C57BL , Nitritos/metabolismo , Oxidación-Reducción , Peroxidasa/metabolismo , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
12.
Front Med (Lausanne) ; 8: 705184, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631729

RESUMEN

Objective: This study aimed to evaluate how emphysema extent and its regional distribution quantified by chest CT are associated with clinical and functional severity in patients with chronic obstructive pulmonary disease (COPD). Methods/Design: Patients with a post-bronchodilator forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) < 0.70, without any other obstructive airway disease, who presented radiological evidence of emphysema on visual CT inspection were retrospectively enrolled. A Quantitative Lung Imaging (QUALI) system automatically quantified the volume of pulmonary emphysema and adjusted this volume to the measured (EmphCTLV) or predicted total lung volume (TLV) (EmphPLV) and assessed its regional distribution based on an artificial neural network (ANN) trained for this purpose. Additionally, the percentage of lung volume occupied by low-attenuation areas (LAA) was computed by dividing the total volume of regions with attenuation lower or equal to -950 Hounsfield units (HU) by the predicted [LAA (%PLV)] or measured CT lung volume [LAA (%CTLV)]. The LAA was then compared with the QUALI emphysema estimations. The association between emphysema extension and its regional distribution with pulmonary function impairment was then assessed. Results: In this study, 86 patients fulfilled the inclusion criteria. Both EmphCTLV and EmphPLV were significantly lower than the LAA indices independently of emphysema severity. CT-derived TLV significantly increased with emphysema severity (from 6,143 ± 1,295 up to 7,659 ± 1,264 ml from mild to very severe emphysema, p < 0.005) and thus, both EmphCTLV and LAA significantly underestimated emphysema extent when compared with those values adjusted to the predicted lung volume. All CT-derived emphysema indices presented moderate to strong correlations with residual volume (RV) (with correlations ranging from 0.61 to 0.66), total lung capacity (TLC) (from 0.51 to 0.59), and FEV1 (~0.6) and diffusing capacity for carbon monoxide DLCO (~0.6). The values of FEV1 and DLCO were significantly lower, and RV (p < 0.001) and TLC (p < 0.001) were significantly higher with the increasing emphysema extent and when emphysematous areas homogeneously affected the lungs. Conclusions: Emphysema volume must be referred to the predicted and not to the measured lung volume when assessing the CT-derived emphysema extension. Pulmonary function impairment was greater in patients with higher emphysema volumes and with a more homogeneous emphysema distribution. Further studies are still necessary to assess the significance of CTpLV in the clinical and research fields.

13.
Toxicon ; 191: 18-24, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33359390

RESUMEN

Cylindrospermopsin (CYN) is a cyanotoxin of increasing worldwide environmental importance as it can harm human beings. Dexamethasone is a steroidal anti-inflammatory agent. Thus, we aimed at evaluating the pulmonary outcomes of acute CYN intoxication and their putative mitigation by dexamethasone. Male BALB/c mice received intratracheally a single dose of saline or CYN (140 µg/kg). Eighteen hours after exposure, mice instilled with either saline solution (Ctrl) or CYN were intramuscularly treated with saline (Tox) or 2 mg/kg dexamethasone (Tox + dexa) every 6 h for 48 h. Pulmonary mechanics was evaluated 66 h after instillation using the forced oscillation technique (flexiVent) to determine airway resistance (RN), tissue viscance (G) and elastance (H). After euthanasia, the lungs were removed and separated for quantification of CYN, myeloperoxidase activity and IL-6 and IL-17 levels plus histological analysis. CYN was also measured in the liver. CYN increased G and H, alveolar collapse, PMN cells infiltration, elastic and collagen fibers, activated macrophages, peroxidase activity in lung and hepatic tissues, as well as IL-6 and IL-17 levels in the lung. Tox + Dexa mice presented total or partial reversion of the aforementioned alterations. Briefly, CYN impaired pulmonary and hepatic characteristics that were mitigated by dexamethasone.


Asunto(s)
Alcaloides/toxicidad , Antiinflamatorios/uso terapéutico , Dexametasona/uso terapéutico , Animales , Toxinas de Cianobacterias , Hígado , Pulmón , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Función Respiratoria
14.
Nanotoxicology ; 15(3): 352-365, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33370539

RESUMEN

C60 fullerene (C60) nanoparticles, a nanomaterial widely used in technology, can offer risks to humans, overcome biological barriers, and deposit onto the lungs. However, data on its putative pulmonary burden are scanty. Recently, the C60 interaction with mitochondria has been described in vitro and in vivo. We hypothesized that C60 impairs lung mechanics and mitochondrial function. Thirty-five male BALB/c mice were randomly divided into two groups intratracheally instilled with vehicle (0.9% NaCl + 1% Tween 80, CTRL) or C60 (1.0 mg/kg, FUL). Twenty-four hours after exposure, 15 FUL and 8 CTRL mice were anesthetized, paralyzed, and mechanically ventilated for the determination of lung mechanics. After euthanasia, the lungs were removed en bloc at end-expiration for histological processing. Lung tissue elastance and viscance were augmented in FUL group. Increased inflammatory cell number, alveolar collapse, septal thickening, and pulmonary edema were detected. In other six FUL and six CTRL mice, mitochondria expressed reduction in state 1 respiration [FUL = 3.0 ± 1.14 vs. CTRL = 4.46 ± 0.9 (SEM) nmol O2/min/mg protein, p = 0.0210], ATP production (FUL = 122.6 ± 18 vs. CTRL = 154.5 ± 14 µmol/100 µg protein, p = 0.0340), and higher oxygen consumption in state 4 [FUL = 12.56 ± 0.9 vs. CTRL = 8.26 ± 0.6], generation of reactive oxygen species (FUL 733.1 ± 169.32 vs. CTRL = 486.39 ± 73.1 nmol/100 µg protein, p = 0.0313) and reason ROS/ATP [FUL = 8.73 ± 2.3 vs. CTRL = 2.99 ± 0.3]. In conclusion, exposure to fullerene C60 impaired pulmonary mechanics and mitochondrial function, increased ROS concentration, and decrease ATP production.


Asunto(s)
Fulerenos/toxicidad , Pulmón/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Nanopartículas/toxicidad , Animales , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Función Respiratoria
15.
Front Physiol ; 12: 748261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34916953

RESUMEN

Direct analysis of isolated mitochondria enables a better understanding of lung dysfunction. Despite well-defined mitochondrial isolation protocols applicable to other tissues, such as the brain, kidney, heart, and liver, a robust and reproductive protocol has not yet been advanced for the lung. We describe a protocol for the isolation of mitochondria from lung tissue aiming for functional analyses of mitochondrial O2 consumption, transmembrane potential, reactive oxygen species (ROS) formation, ATP production, and swelling. We compared our protocol to that used for heart mitochondrial function that is well-established in the literature, and achieved similar results.

16.
Oxid Med Cell Longev ; 2021: 5196896, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745417

RESUMEN

Mechanical ventilation (MV) is essential for the treatment of critical patients since it may provide a desired gas exchange. However, MV itself can trigger ventilator-associated lung injury in patients. We hypothesized that the mechanisms of lung injury through redox imbalance might also be associated with pulmonary inflammatory status, which has not been so far described. We tested it by delivering different tidal volumes to normal lungs undergoing MV. Healthy Wistar rats were divided into spontaneously breathing animals (control group, CG), and rats were submitted to MV (controlled ventilation mode) with tidal volumes of 4 mL/kg (MVG4), 8 mL/kg (MVG8), or 12 mL/kg (MVG12), zero end-expiratory pressure (ZEEP), and normoxia (FiO2 = 21%) for 1 hour. After ventilation and euthanasia, arterial blood, bronchoalveolar lavage fluid (BALF), and lungs were collected for subsequent analysis. MVG12 presented lower PaCO2 and bicarbonate content in the arterial blood than CG, MVG4, and MVG8. Neutrophil influx in BALF and MPO activity in lung tissue homogenate were significantly higher in MVG12 than in CG. The levels of CCL5, TNF-α, IL-1, and IL-6 in lung tissue homogenate were higher in MVG12 than in CG and MVG4. In the lung parenchyma, the lipid peroxidation was more important in MVG12 than in CG, MVG4, and MVG8, while there was more protein oxidation in MVG12 than in CG and MVG4. The stereological analysis confirmed the histological pulmonary changes in MVG12. The association of controlled mode ventilation and high tidal volume, without PEEP and normoxia, impaired pulmonary histoarchitecture and triggered redox imbalance and lung inflammation in healthy adult rats.


Asunto(s)
Lesión Pulmonar/patología , Neumonía/patología , Respiración Artificial/efectos adversos , Animales , Citocinas/metabolismo , Lesión Pulmonar/etiología , Lesión Pulmonar/metabolismo , Masculino , Oxidación-Reducción , Neumonía/etiología , Neumonía/metabolismo , Ratas , Ratas Wistar , Volumen de Ventilación Pulmonar
17.
Front Physiol ; 12: 617657, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33658944

RESUMEN

BACKGROUND: COVID-19 pneumonia extension is assessed by computed tomography (CT) with the ratio between the volume of abnormal pulmonary opacities (PO) and CT-estimated lung volume (CTLV). CT-estimated lung weight (CTLW) also correlates with pneumonia severity. However, both CTLV and CTLW depend on demographic and anthropometric variables. PURPOSES: To estimate the extent and severity of COVID-19 pneumonia adjusting the volume and weight of abnormal PO to the predicted CTLV (pCTLV) and CTLW (pCTLW), respectively, and to evaluate their possible association with clinical and radiological outcomes. METHODS: Chest CT from 103 COVID-19 and 86 healthy subjects were examined retrospectively. In controls, predictive equations for estimating pCTLV and pCTLW were assessed. COVID-19 pneumonia extent and severity were then defined as the ratio between the volume and the weight of abnormal PO expressed as a percentage of the pCTLV and pCTLW, respectively. A ROC analysis was used to test differential diagnosis ability of the proposed method in COVID-19 and controls. The degree of pneumonia extent and severity was assessed with Z-scores relative to the average volume and weight of PO in controls. Accordingly, COVID-19 patients were classified as with limited, moderate and diffuse pneumonia extent and as with mild, moderate and severe pneumonia severity. RESULTS: In controls, CTLV could be predicted by sex and height (adjusted R 2 = 0.57; P < 0.001) while CTLW by age, sex, and height (adjusted R 2 = 0.6; P < 0.001). The cutoff of 20% (AUC = 0.91, 95%CI 0.88-0.93) for pneumonia extent and of 50% (AUC = 0.91, 95%CI 0.89-0.92) for pneumonia severity were obtained. Pneumonia extent were better correlated when expressed as a percentage of the pCTLV and pCTLW (r = 0.85, P < 0.001), respectively. COVID-19 patients with diffuse and severe pneumonia at admission presented significantly higher CRP concentration, intra-hospital mortality, ICU stay and ventilatory support necessity, than those with moderate and limited/mild pneumonia. Moreover, pneumonia severity, but not extent, was positively and moderately correlated with age (r = 0.46) and CRP concentration (r = 0.44). CONCLUSION: The proposed estimation of COVID-19 pneumonia extent and severity might be useful for clinical and radiological patient stratification.

18.
Environ Pollut ; 269: 116188, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33302087

RESUMEN

C60 fullerene (C60) is a nano-pollutant that can damage the respiratory system. Eugenol exhibits significant anti-inflammatory and antioxidant properties. We aimed to investigate the time course of C60 emulsion-induced pulmonary and spermatic harms, as well as the effect of eugenol on C60 emulsion toxicity. The first group of mice (protocol 1) received intratracheally C60 emulsion (1.0 mg/kg BW) or vehicle and were tested at 12, 24, 72 and 96 h (F groups) thereafter. The second group of mice (protocol 2) received intratracheally C60 emulsion or vehicle, 1 h later were gavaged with eugenol (150 mg/kg) or vehicle, and experiments were done 24 h after instillation. Lung mechanics, morphology, redox markers, cytokines and epididymal spermatozoa were analyzed. Protocol 1: Tissue damping (G) and elastance (H) were significantly higher in F24 than in others groups, except for H in F72. Morphological and inflammatory parameters were worst at 24 h and subsequently declined until 96 h, whereas redox and spermatic parameters worsened over the whole period. Eugenol eliminated the increase in G, H, cellularity, and cytokines, attenuated oxidative stress induced by C60 exposure, but had no effect on sperm. Hence, exposure to C60 emulsion deteriorated lung morphofunctional, redox and inflammatory characteristics and increased the risk of infertility. Furthermore, eugenol avoided those changes, but did not prevent sperm damage.


Asunto(s)
Fulerenos , Animales , Emulsiones , Eugenol/toxicidad , Fulerenos/toxicidad , Pulmón , Masculino , Ratones , Espermatozoides
19.
Cell Biol Toxicol ; 26(5): 481-98, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20340042

RESUMEN

This review reports the role of oxidative stress in impairing the function of lung exposed to particulate matter (PM). PM constitutes a heterogeneous mixture of various types of particles, many of which are likely to be involved in oxidative stress induction and respiratory diseases. Probably, the ability of PM to cause oxidative stress underlies the association between increased exposure to PM and exacerbations of lung disease. Mostly because of their large surface area, ultrafine particles have been shown to cause oxidative stress and proinflammatory effects in different in vivo and in vitro studies. Particle components and surface area may act synergistically inducing lung inflammation. In this vein, reactive oxygen species elicited upon PM exposure have been shown to activate a number of redox-responsive signaling pathways and Ca(2+) influx in lung target cells that are involved in the expression of genes that modulate relevant responses to lung inflammation and disease.


Asunto(s)
Inflamación/fisiopatología , Enfermedades Pulmonares/fisiopatología , Pulmón/fisiopatología , Estrés Oxidativo , Material Particulado/toxicidad , Transducción de Señal , Contaminación del Aire , Antioxidantes/metabolismo , Calcio/metabolismo , Catalasa/metabolismo , Radicales Libres/metabolismo , Inflamación/etiología , Enfermedades Pulmonares/etiología , Macrófagos Alveolares/fisiología , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
20.
Inhal Toxicol ; 22(10): 861-7, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20545475

RESUMEN

Along the aluminum refining process, alumina (Al2O3) constitutes the main source of dust. Although aluminum refinery workers present respiratory symptoms with lung functional changes, no conclusive data about lung function impairment after alumina exposure has been so far reported. We examined the pulmonary alterations of exposure to material collected in an aluminum refinery in Brazil. BALB/c mice were exposed in a whole-body chamber for 1 h to either saline (CTRL, n = 11) or to a suspension (in saline) of 8 mg/m(3) of the dust (ALUM, n = 11) both delivered by an ultrasonic nebulizer. Twenty-four hours after exposure lung mechanics were measured by the end-inflation method. Lungs were prepared for histology. ALUM showed significantly higher static elastance (34.61 +/- 5.76 cmH2O/mL), elastic component of viscoelasticity (8.16 +/- 1.20 cmH2O/mL), pressure used to overcome the resistive component of viscoelasticity (1.62 +/- 0.24 cmH2O), and total resistive pressure (2.21 +/- 0.49 cmH2O) than CTRL (27.95 +/- 3.63 cmH2O/mL, 6.12 +/- 0.99 cmH2O/mL, 1.23 +/- 0.19 cmH2O, and 1.68 +/- 0.23 cmH2O, respectively). ALUM also presented significantly higher fraction area of alveolar collapse (69.7 +/- 1.2%) and influx of polymorphonuclear cells (27.5 +/- 1.1%) in lung parenchyma than CTRL (27.2 +/- 1.1% and 14.6 +/- 0.7%, respectively). The composition analysis of the particulate matter showed high concentrations of aluminum. For the first time it was demonstrated in an experimental model that an acute exposure to dust collected in an aluminum producing facility impaired lung mechanics that could be associated with inflammation.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Contaminantes Ocupacionales del Aire/toxicidad , Óxido de Aluminio/toxicidad , Polvo , Pulmón/efectos de los fármacos , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/fisiopatología , Administración por Inhalación , Óxido de Aluminio/análisis , Animales , Cámaras de Exposición Atmosférica , Elasticidad/efectos de los fármacos , Monitoreo del Ambiente , Femenino , Exposición por Inhalación , Pulmón/patología , Pulmón/fisiopatología , Rendimiento Pulmonar/efectos de los fármacos , Rendimiento Pulmonar/fisiología , Ratones , Ratones Endogámicos BALB C , Neutrófilos/efectos de los fármacos , Neutrófilos/patología , Pruebas de Función Respiratoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA