RESUMEN
BACKGROUND: Retinal degeneration results from disruptions in retinal homeostasis due to injury, disease, or aging and triggers peripheral leukocyte infiltration. Effective immune responses rely on coordinated actions of resident microglia and recruited macrophages, critical for tissue remodeling and repair. However, these phagocytes also contribute to chronic inflammation in degenerated retinas, yet the precise coordination of immune response to retinal damage remains elusive. Recent investigations have demonstrated that phagocytic cells can produce extracellular traps (ETs), which are a source of self-antigens that alter the immune response, which can potentially lead to tissue injury. METHODS: Innovations in experimental systems facilitate real-time exploration of immune cell interactions and dynamic responses. We integrated in vivo imaging with ultrastructural analysis, transcriptomics, pharmacological treatments, and knockout mice to elucidate the role of phagocytes and their modulation of the local inflammatory response through extracellular traps (ETs). Deciphering these mechanisms is essential for developing novel and enhanced immunotherapeutic approaches that can redirect a specific maladaptive immune response towards favorable wound healing in the retina. RESULTS: Our findings underscore the pivotal role of innate immune cells, especially macrophages/monocytes, in regulating retinal repair and inflammation. The absence of neutrophil and macrophage infiltration aids parenchymal integrity restoration, while their depletion, particularly macrophages/monocytes, impedes vascular recovery. We demonstrate that macrophages/monocytes, when recruited in the retina, release chromatin and granular proteins, forming ETs. Furthermore, the pharmacological inhibition of ETosis support retinal and vascular repair, surpassing the effects of blocking innate immune cell recruitment. Simultaneously, the absence of ETosis reshapes the inflammatory response, causing neutrophils, helper, and cytotoxic T-cells to be restricted primarily in the superficial capillary plexus instead of reaching the damaged photoreceptor layer. CONCLUSIONS: Our data offer novel insights into innate immunity's role in responding to retinal damage and potentially help developing innovative immunotherapeutic approaches that can shift the immune response from maladaptive to beneficial for retinal regeneration.
Asunto(s)
Trampas Extracelulares , Degeneración Retiniana , Animales , Ratones , Macrófagos/metabolismo , Degeneración Retiniana/metabolismo , Inmunidad Innata/fisiología , Inflamación/metabolismo , Ratones Noqueados , Rayos LáserRESUMEN
BACKGROUND: The human gut microbiome (GM) is involved in inflammation and immune response regulation. Dysbiosis, an imbalance in this ecosystem, facilitates pathogenic invasion, disrupts immune equilibrium, and potentially triggers diseases including various human leucocyte antigen (HLA)-B27-associated autoinflammatory and autoimmune diseases such as inflammatory bowel disease (IBD) and spondyloarthropathy (SpA). This study assesses compositional and functional alterations of the GM in patients with HLA-B27-associated non-infectious anterior uveitis (AU) compared to healthy controls. METHODS: The gut metagenomes of 20 patients with HLA-B27-associated non-infectious AU, 21 age- and sex-matched HLA-B27-negative controls, and 6 HLA-B27-positive healthy controls without a history of AU were sequenced using the Illumina NovaSeq 6000 platform for whole metagenome shotgun sequencing. To identify taxonomic and functional features with significantly different relative abundances between groups and to identify associations with clinical metadata, the multivariate association by linear models (MaAsLin) R package was applied. RESULTS: Significantly higher levels of the Eubacterium ramulus species were found in HLA-B27-negative controls (p = 0.0085, Mann-Whitney U-test). No significant differences in microbial composition were observed at all other taxonomic levels. Functionally, the lipid IVA biosynthesis pathway was upregulated in patients (p < 0.0001, Mann-Whitney U-test). A subgroup analysis comparing patients with an active non-infectious AU to their age- and sex-matched HLA-B27-negative controls, showed an increase of the species Phocaeicola vulgatus in active AU (p = 0.0530, Mann-Whitney U-test). An additional analysis comparing AU patients to age- and sex-matched HLA-B27-positive controls, showed an increase of the species Bacteroides caccae in controls (p = 0.0022, Mann-Whitney U-test). CONCLUSION: In our cohort, non-infectious AU development is associated with compositional and functional alterations of the GM. Further research is needed to assess the causality of these associations, offering potentially novel therapeutic strategies.
Asunto(s)
Microbioma Gastrointestinal , Antígeno HLA-B27 , Uveítis Anterior , Humanos , Antígeno HLA-B27/genética , Antígeno HLA-B27/inmunología , Femenino , Masculino , Microbioma Gastrointestinal/fisiología , Persona de Mediana Edad , Uveítis Anterior/microbiología , Uveítis Anterior/inmunología , Adulto , Estudios de Casos y Controles , AncianoRESUMEN
The gut microbiome consists of more than a thousand different microbes and their associated genes and microbial metabolites. It influences various host metabolic pathways and is therefore important for homeostasis. In recent years, its influence on health and disease has been extensively researched. Dysbiosis, or imbalance in the gut microbiome, is associated with several diseases. Consequent chronic inflammation may lead to or promote inflammatory bowel disease, obesity, diabetes mellitus, atherosclerosis, alcoholic and non-alcoholic liver disease, cirrhosis, hepatocellular carcinoma, and other diseases. The pathogenesis of the three most common retinal vascular diseases, diabetic retinopathy, retinal vein occlusion, and retinal artery occlusion, may also be influenced by an altered microbiome and associated risk factors such as diabetes mellitus, atherosclerosis, hypertension, and obesity. Direct cause-effect relationships remain less well understood. A potential prevention or treatment modality for these diseases could be targeting and modulating the individual's gut microbiome.
Asunto(s)
Aterosclerosis , Diabetes Mellitus , Microbiota , Enfermedades de la Retina , Humanos , Obesidad/metabolismo , DisbiosisRESUMEN
BACKGROUND: Dupilumab is used for the treatment of atopic dermatitis (AD). Approximately one third of AD patients develop a dupilumab-associated ocular surface disease (DAOSD), of which the pathomechanism is poorly understood. This study aimed at investigating inflammatory markers in tear fluids of patients on dupilumab therapy. METHODS: Tear fluids were collected from AD patients with DAOSD (ADwDAOSD), AD patients without DAOSD (ADw/oDAOSD), and non-AD patients before and during dupilumab therapy, and analyzed using a specialized proteomic approach quantifying inflammatory markers. The ocular surface microbiome was determined by next generation sequencing technology. RESULTS: Upon dupilumab therapy, an upregulation of 31 inflammatory markers was observed in DAOSD tear fluids compared to baseline in AD patients. While IL-12B was upregulated in both ADwDAOSD and ADw/oDAOSD groups, the pattern of inflammatory markers significantly differed between groups and over time. In the ADwDAOSD group, a shift from a mixed Th2/Th17 pattern at baseline toward a Th1/Th17 profile under dupilumab was observed. Furthermore, an upregulation of remodeling and fibrosis markers was seen in DAOSD. Semantic map and hierarchical cluster analyses of baseline marker expression revealed four clusters distinguishing between AD and non-AD as well as ADwDAOSD and ADw/oDAOSD patient groups. In a pilot study, dupilumab therapy was associated with a decrease in richness of the ocular surface microbiome. CONCLUSIONS: DAOSD is characterized by a Th1/Th17 cytokine profile and an upregulation of markers known to promote remodeling and fibrosis. The expression pattern of inflammatory markers in tear fluids at baseline might serve as a prognostic factor for DAOSD.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Dermatitis Atópica , Oftalmopatías , Humanos , Proyectos Piloto , Proteómica , Dermatitis Atópica/diagnóstico , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , Inflamación , Fibrosis , Índice de Severidad de la Enfermedad , Resultado del TratamientoRESUMEN
Proliferative vitreoretinopathy (PVR) remains the main cause of failure in retinal detachment (RD) surgery and a demanding challenge for vitreoretinal surgeons. Despite the large improvements in surgical techniques and a better understanding of PVR pathogenesis in the last years, satisfactory anatomical and visual outcomes have not been provided yet. For this reason, several different adjunctive pharmacological agents have been investigated in combination with surgery. In this review, we analyze the current and emerging adjunctive treatment options for the management of PVR and we discuss their possible clinical application and beneficial role in this subgroup of patients.
Asunto(s)
Oftalmólogos , Desprendimiento de Retina , Cirujanos , Vitreorretinopatía Proliferativa , Humanos , Vitreorretinopatía Proliferativa/diagnóstico , Vitreorretinopatía Proliferativa/cirugía , Desprendimiento de Retina/cirugíaRESUMEN
PURPOSE: To identify optical coherence tomography (OCT) features to predict the course of central serous chorioretinopathy (CSC) with an artificial intelligence-based program. METHODS: Multicenter, observational study with a retrospective design. Treatment-naïve patients with acute CSC and chronic CSC were enrolled. Baseline OCTs were examined by an artificial intelligence-developed platform (Discovery OCT Fluid and Biomarker Detector, RetinAI AG, Switzerland). Through this platform, automated retinal layer thicknesses and volumes, including intaretinal and subretinal fluid, and pigment epithelium detachment were measured. Baseline OCT features were compared between acute CSC and chronic CSC patients. RESULTS: One hundred and sixty eyes of 144 patients with CSC were enrolled, of which 100 had chronic CSC and 60 acute CSC. Retinal layer analysis of baseline OCT scans showed that the inner nuclear layer, the outer nuclear layer, and the photoreceptor-retinal pigmented epithelium complex were significantly thicker at baseline in eyes with acute CSC in comparison with those with chronic CSC ( P < 0.001). Similarly, choriocapillaris and choroidal stroma and retinal thickness (RT) were thicker in acute CSC than chronic CSC eyes ( P = 0.001). Volume analysis revealed average greater subretinal fluid volumes in the acute CSC group in comparison with chronic CSC ( P = 0.041). CONCLUSION: Optical coherence tomography features may be helpful to predict the clinical course of CSC. The baseline presence of an increased thickness in the outer retinal layers, choriocapillaris and choroidal stroma, and subretinal fluid volume seems to be associated with acute course of the disease.
Asunto(s)
Coriorretinopatía Serosa Central , Humanos , Coriorretinopatía Serosa Central/diagnóstico , Tomografía de Coherencia Óptica/métodos , Estudios Retrospectivos , Inteligencia Artificial , Retina , Angiografía con FluoresceínaRESUMEN
INTRODUCTION: The aim of this study is to investigate the role of an artificial intelligence (AI)-developed OCT program to predict the clinical course of central serous chorioretinopathy (CSC ) based on baseline pigment epithelium detachment (PED) features. METHODS: Single-center, observational study with a retrospective design. Treatment-naïve patients with acute CSC and chronic CSC were recruited and OCTs were analyzed by an AI-developed platform (Discovery OCT Fluid and Biomarker Detector, RetinAI AG, Switzerland), providing automatic detection and volumetric quantification of PEDs. Flat irregular PED presence was annotated manually and afterwards measured by the AI program automatically. RESULTS: 115 eyes of 101 patients with CSC were included, of which 70 were diagnosed with chronic CSC and 45 with acute CSC. It was found that patients with baseline presence of foveal flat PEDs and multiple flat foveal and extrafoveal PEDs had a higher chance of developing chronic form. AI-based volumetric analysis revealed no significant differences between the groups. CONCLUSIONS: While more evidence is needed to confirm the effectiveness of AI-based PED quantitative analysis, this study highlights the significance of identifying flat irregular PEDs at the earliest stage possible in patients with CSC, to optimize patient management and long-term visual outcomes.
RESUMEN
Although glaucoma is a leading cause of irreversible blindness worldwide, its pathogenesis is incompletely understood, and intraocular pressure (IOP) is the only modifiable risk factor to target the disease. Several associations between the gut microbiome and glaucoma, including the IOP, have been suggested. There is growing evidence that interactions between microbes on the ocular surface, termed the ocular surface microbiome (OSM), and tear proteins, collectively called the tear proteome, may also play a role in ocular diseases such as glaucoma. This study aimed to find characteristic features of the OSM and tear proteins in patients with glaucoma. The whole-metagenome shotgun sequencing of 32 conjunctival swabs identified Actinobacteria, Firmicutes, and Proteobacteria as the dominant phyla in the cohort. The species Corynebacterium mastitidis was only found in healthy controls, and their conjunctival microbiomes may be enriched in genes of the phospholipase pathway compared to glaucoma patients. Despite these minor differences in the OSM, patients showed an enrichment of many tear proteins associated with the immune system compared to controls. In contrast to the OSM, this emphasizes the role of the proteome, with a potential involvement of immunological processes in glaucoma. These findings may contribute to the design of new therapeutic approaches targeting glaucoma and other associated diseases.
Asunto(s)
Glaucoma , Microbiota , Proteoma , Lágrimas , Humanos , Glaucoma/metabolismo , Glaucoma/microbiología , Proteoma/metabolismo , Masculino , Femenino , Lágrimas/metabolismo , Persona de Mediana Edad , Proteínas del Ojo/metabolismo , Proteínas del Ojo/genética , Anciano , Conjuntiva/metabolismo , Conjuntiva/microbiología , Metagenoma , AdultoRESUMEN
BACKGROUND: Clustering of microglia around the vasculature has been reported in the retina and the brain after systemic administration of lipopolysaccharides (LPS) in mice. LPS acts via activation of Toll-like receptor 4 (TRL4), which is expressed in several cell types including microglia, monocytes and vascular endothelial cells. The purpose of this study was to investigate the effect of systemic LPS in the pigmented mouse retina and the involvement of endothelial TLR4 in LPS-induced retinal microglia activation. METHODS: C57BL/6J, conditional knockout mice that lack Tlr4 expression selectively on endothelial cells (TekCre-posTlr4loxP/loxP) and TekCre-negTlr4loxP/loxP mice were used. The mice were injected with 1 mg/kg LPS via the tail vein once per day for a total of 4 days. Prior to initiation of LPS injections and approximately 5 h after the last injection, in vivo imaging using fluorescein angiography and spectral-domain optical coherence tomography was performed. Immunohistochemistry, flow cytometry, electroretinography and transmission electron microscopy were utilized to investigate the role of endothelial TLR4 in LPS-induced microglia activation and retinal function. RESULTS: Activation of microglia, infiltration of monocyte-derived macrophages, impaired ribbon synapse organization and retinal dysfunction were observed after the LPS exposure in C57BL/6J and TekCre-negTlr4loxP/loxP mice. None of these effects were observed in the retinas of conditional Tlr4 knockout mice after the LPS challenge. CONCLUSIONS: The findings of the present study suggest that systemic LPS exposure can have detrimental effects in the healthy retina and that TLR4 expressed on endothelial cells is essential for retinal microglia activation and retinal dysfunction upon systemic LPS challenge. This important finding provides new insights into the role of microglia-endothelial cell interaction in inflammatory retinal disease.
Asunto(s)
Lipopolisacáridos , Microglía , Animales , Ratones , Células Endoteliales/metabolismo , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Retina/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismoRESUMEN
Subretinal fibrosis can occur during neovascular age-related macular degeneration (nAMD) and consequently provokes progressing deterioration of AMD patient's vision. Intravitreal anti-vascular endothelial growth factor (VEGF) injections decrease choroidal neovascularization (CNV), however, subretinal fibrosis remains principally unaffected. So far, no successful treatment nor established animal model for subretinal fibrosis exists. In order to investigate the impact of anti-fibrotic compounds on solely fibrosis, we refined a time-dependent animal model of subretinal fibrosis without active choroidal neovascularization (CNV). To induce CNV-related fibrosis, wild-type (WT) mice underwent laser photocoagulation of the retina with rupture of Bruch's membrane. The lesions volume was assessed with optical coherence tomography (OCT). CNV (Isolectin B4) and fibrosis (type 1 collagen) were separately quantified with confocal microscopy of choroidal whole-mounts at every time point post laser induction (day 7-49). In addition, OCT, autofluorescence and fluorescence angiography were carried out at designated timepoints (day 7, 14, 21, 28, 35, 42, 49) to monitor CNV and fibrosis transformation over time. From 21 to 49 days post laser lesion leakage in the fluorescence angiography decreased. Correspondingly, Isolectin B4 decreased in lesions of choroidal flat mounts and type 1 collagen increased. Fibrosis markers, namely vimentin, fibronectin, alpha-smooth muscle actin (α-SMA) and type 1 collagen were detected at different timepoints of tissue repair in choroids and retinas post laser. These results prove that the late phase of the CNV-related fibrosis model enables screening of anti-fibrotic compounds to accelerate the therapeutic advancement for the prevention, reduction, or inhibition of subretinal fibrosis.
Asunto(s)
Neovascularización Coroidal , Colágeno Tipo I , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neovascularización Coroidal/diagnóstico , Neovascularización Coroidal/etiología , Neovascularización Coroidal/tratamiento farmacológico , Angiografía con Fluoresceína , Modelos Animales de Enfermedad , Fibrosis , Tomografía de Coherencia ÓpticaRESUMEN
Although dry eye disease (DED) is one of the most common ocular surface diseases worldwide, its pathogenesis is incompletely understood, and treatment options are limited. There is growing evidence that complex interactions between the ocular surface microbiome (OSM) and tear fluid constituents, potentially leading to inflammatory processes, are associated with ocular surface diseases such as DED. In this study, we aimed to find unique compositional and functional features of the OSM associated with human and microbial tear proteins in patients with DED. Applying whole-metagenome shotgun sequencing of forty lid and conjunctival swabs, we identified 229 taxa, with Actinobacteria and Proteobacteria being the most abundant phyla and Propionibacterium acnes the dominating species in the cohort. When DED patients were compared to controls, the species Corynebacterium tuberculostearicum was more abundant in conjunctival samples, whereas the family Propionibacteriaceae was more abundant in lid samples. Functional analysis showed that genes of L-lysine biosynthesis, tetrapyrrole biosynthesis, 5-aminoimidazole ribonucleotide biosynthesis, and the super pathway of L-threonine biosynthesis were enriched in conjunctival samples of controls. The relative abundances of Acinetobacter johnsonii correlated with seven human tear proteins, including mucin-16. The three most abundant microbial tear proteins were the chaperone protein DnaK, the arsenical resistance protein ArsH, and helicase. Compositional and functional features of the OSM and the tear proteome are altered in patients with DED. Ultimately, this may help to design novel interventional therapeutics to target DED.
Asunto(s)
Síndromes de Ojo Seco , Microbiota , Humanos , Proteoma , Ojo , CaraRESUMEN
PURPOSE: To assess whether macular fluorescence lifetimes may serve as a predictor for long-term outcomes in macula-off rhegmatogenous retinal detachment. METHODS: A single-center observational study was conducted. Patients with pseudophakic macula-off rhegmatogenous retinal detachment were included and evaluated 1 and 6 months after successful reattachment surgery. Fluorescence lifetime imaging ophthalmoscopy lifetimes in the central Early Treatment Diabetic Retinopathy Study grid subfield, in two distinct channels (short spectral channel and long spectral channel) were analyzed. Best-corrected visual acuity optical coherence tomography of the macula and fluorescence lifetimes were measured at month 1 and month 6. RESULTS: Nineteen patients were analyzed. Lifetimes of the previously detached retinas were prolonged compared with the healthy fellow eyes. Short lifetimes at month 1 were associated with better best-corrected visual acuity improvement (short spectral channel: r2 = 0.27, P < 0.05, long spectral channel: r2 = 0.23, P < 0.05) and with good final best-corrected visual acuity (short spectral channel: r2 = 0.43, P < 0.01, long spectral channel: r2 = 0.25, P < 0.05). Lifetimes were prolonged in some cases of outer retinal damage in optical coherence tomography scans. CONCLUSION: Fluorescence lifetime imaging ophthalmoscopy might serve as a prediction tool for functional recovery in pseudophakic macula-off rhegmatogenous retinal detachment. Retinal fluorescence lifetimes could give insight in molecular processes after rhegmatogenous retinal detachment.
Asunto(s)
Mácula Lútea , Desprendimiento de Retina , Humanos , Desprendimiento de Retina/diagnóstico , Desprendimiento de Retina/cirugía , Agudeza Visual , Oftalmoscopía , Tomografía de Coherencia Óptica/métodosRESUMEN
INTRODUCTION: In this retrospective cohort study, we wanted to evaluate the performance and analyze the insights of an artificial intelligence (AI) algorithm in detecting retinal fluid in spectral-domain OCT volume scans from a large cohort of patients with neovascular age-related macular degeneration (AMD) and diabetic macular edema (DME). METHODS: A total of 3,981 OCT volumes from 374 patients with AMD and 11,501 OCT volumes from 811 patients with DME were acquired with Heidelberg-Spectralis OCT device (Heidelberg Engineering Inc., Heidelberg, Germany) between 2013 and 2021. Each OCT volume was annotated for the presence or absence of intraretinal fluid (IRF) and subretinal fluid (SRF) by masked reading center graders (ground truth). The performance of an already published AI algorithm to detect IRF and SRF separately, and a combined fluid detector (IRF and/or SRF) of the same OCT volumes was evaluated. An analysis of the sources of disagreement between annotation and prediction and their relationship to central retinal thickness was performed. We computed the mean areas under the curves (AUC) and under the precision-recall curves (AP), accuracy, sensitivity, specificity, and precision. RESULTS: The AUC for IRF was 0.92 and 0.98, for SRF 0.98 and 0.99, in the AMD and DME cohort, respectively. The AP for IRF was 0.89 and 1.00, for SRF 0.97 and 0.93, in the AMD and DME cohort, respectively. The accuracy, specificity, and sensitivity for IRF were 0.87, 0.88, 0.84, and 0.93, 0.95, 0.93, and for SRF 0.93, 0.93, 0.93, and 0.95, 0.95, 0.95 in the AMD and DME cohort, respectively. For detecting any fluid, the AUC was 0.95 and 0.98, and the accuracy, specificity, and sensitivity were 0.89, 0.93, and 0.90 and 0.95, 0.88, and 0.93, in the AMD and DME cohort, respectively. False positives were present when retinal shadow artifacts and strong retinal deformation were present. False negatives were due to small hyporeflective areas in combination with poor image quality. The combined detector correctly predicted more OCT volumes than the single detectors for IRF and SRF, 89.0% versus 81.6% in the AMD and 93.1% versus 88.6% in the DME cohort. DISCUSSION/CONCLUSION: The AI-based fluid detector achieves high performance for retinal fluid detection in a very large dataset dedicated to AMD and DME. Combining single detectors provides better fluid detection accuracy than considering the single detectors separately. The observed independence of the single detectors ensures that the detectors learned features particular to IRF and SRF.
Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Degeneración Macular , Edema Macular , Degeneración Macular Húmeda , Humanos , Edema Macular/diagnóstico , Retinopatía Diabética/diagnóstico , Tomografía de Coherencia Óptica/métodos , Líquido Subretiniano , Estudios Retrospectivos , Inteligencia Artificial , Degeneración Macular/diagnóstico , Inhibidores de la AngiogénesisRESUMEN
Glaucoma is associated with the demise of retinal ganglion cells and their axons, primarily located in the retina. Vitreoretinal and glaucoma surgery overlap to a not inconsiderable extent in certain diseases. This overview article aims to present these diseases and highlight treatment strategies and the respective modes of action collectively. This article describes malignant glaucoma or aqueous misdirection syndrome, retinal surgery for choroidal detachment and expulsive choroidal hemorrhage, postoperative blebitis and endophthalmitis after glaucoma surgery, and vitrectomy after glaucoma surgery, along with the therapeutic paths for managing complications. The areas of glaucoma and vitreoretinal surgery are tightly linked. Colleagues from both subspecialties should be familiar with a certain overview of diseases concerning both subject areas.
Asunto(s)
Endoftalmitis , Glaucoma , Desprendimiento de Retina , Cirugía Vitreorretiniana , Endoftalmitis/etiología , Glaucoma/complicaciones , Glaucoma/diagnóstico , Glaucoma/cirugía , Humanos , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/cirugía , Desprendimiento de Retina/cirugía , Estudios Retrospectivos , Vitrectomía/efectos adversos , Cirugía Vitreorretiniana/efectos adversos , Cuerpo VítreoRESUMEN
Neovascular age-related macular degeneration is one of the leading causes of blindness. Microglia and macrophages play a critical role in choroidal neovascularization (CNV) and may, therefore, be potential targets to modulate the disease course. This study evaluated the effect of the colony-stimulating factor-1 receptor inhibitor PLX5622 on experimental laser-induced CNV. A 98% reduction of retinal microglia cells was observed in the retina 1 week after initiation of PLX5622 treatment, preventing accumulation of macrophages within the laser site and leading to a reduction of leukocytes within the choroid after CNV induction. Mice treated with PLX5622 had a significantly faster decrease of the CNV lesion size, as revealed by in vivo imaging and immunohistochemistry from day 3 to day 14 compared with untreated mice. Several inflammatory modulators, such as chemokine (C-C motif) ligand 9, granulocyte-macrophage colony-stimulating factor, soluble tumor necrosis factor receptor-I, IL-1α, and matrix metallopeptidase-2, were elevated in the acute phase of the disease when microglia were ablated with PLX5622, whereas other cytokines (eg, interferon-γ, IL-4, and IL-10) were reduced. Our results suggest that colony-stimulating factor-1 receptor inhibition may be a novel therapeutic target in patients with neovascular age-related macular degeneration.
Asunto(s)
Neovascularización Coroidal/prevención & control , Modelos Animales de Enfermedad , Rayos Láser/efectos adversos , Compuestos Orgánicos/farmacología , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Animales , Quimiocinas/metabolismo , Neovascularización Coroidal/etiología , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Citocinas/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BLRESUMEN
PURPOSE: To investigate the dependence of the ciliary body length (CBL) on the axial length (AL) and to draw conclusions on implications regarding safe pars plana access for intravitreal injections and vitreoretinal surgery. METHODS: A total of 200 individuals (mean age 42 years, SD ± 15.4) were enrolled in the study. Objective refraction and AL were obtained. Spherical equivalent (SE) was calculated. Anterior segment optical coherence tomography (ASOCT) was used to image and measure the CBL. RESULTS: The mean SE was - 1.64 diopters (SD ± 3.15, range - 14.5 to + 9 diopters) and the mean AL was 24.19 mm (SD ± 1.65, range 19.8-32.2 mm). There was a significant correlation between SE and AL (r2 = 0.62, p < 0.0001). Mean CBL correlated significantly with age (r2 = 0.11, p < 0.0001), AL (r2 = 0.23, p < 0.0001) and SE (r2 = 0.25, p < 0.0001). The mean CBL was 3351 µm (SD ± 459, range 2184-4451 µm). Three separate groups were defined by their AL with a normal AL group (AL 22.5 to 25 mm), a short AL group (AL < 22.5 mm) and a long AL group (AL > 25 mm). The mean CBL in the normal AL group was 3311 µm (SD ± 427), in the short AL group 2936 µm (SD ± 335) and in the long AL group 3715 µm (SD ± 365), and differed significantly (p < 0.0001) when compared. CONCLUSION: For interventions requiring pars plana access (as an intravitreal injection or vitreoretinal surgery), an incision distance of 3.5-4.0 mm posterior to the limbus is recommended. In our research, however, a difference of 0.77 mm in mean CBL between the group with short AL and the group with long AL is demonstrated, implying that the mean CBL in very short and very long eyes differs significantly. These findings suggest that the AL should be taken into account for pars plana access and that it would be advisable to prefer the shorter or longer recommended distance (3.5 and 4.0 mm, respectively) from the limbus, which correlates with the AL. If AL is > 25 mm, a distance of 4.0 mm from the limbus should be chosen; and if AL is < 22.5 mm, a distance of 3.5 mm seems adequate. TRIAL REGISTRATION NUMBER AND DATE: NCT00564291, 27 Nov 2007.
Asunto(s)
Cuerpo Ciliar , Tomografía de Coherencia Óptica , Adulto , Cuerpo Ciliar/diagnóstico por imagen , Cuerpo Ciliar/cirugía , Femenino , Humanos , Inyecciones Intravítreas , Masculino , Persona de Mediana EdadRESUMEN
PURPOSE: To investigate and quantify the influence of imaging artifacts on retinal fluorescence lifetime (FLIO) values and to provide helpful hints and tricks to avoid imaging artifacts and to improve FLIO image acquisition quality. METHODS: A systematic analysis of potential parameters influencing FLIO quality and/or fluorescence lifetime values was performed in a prospective systematic experimental imaging study in five eyes of five healthy subjects. For image acquisition, a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering) was used. Quantitative analysis of FLIO lifetime changes due to imaging artifacts was performed. RESULTS: Imaging artifacts with significant influence on fluorescence lifetimes included too short image acquisition time, insufficient illumination, ocular surface problems, and image defocus. Prior use of systemic or topical fluorescein makes analysis of retinal fluorescence lifetimes impossible. CONCLUSION: Awareness of possible sources of imaging artifacts is important for FLIO image acquisition and analysis. Therefore, standardized imaging and analysis procedure in FLIO is crucial for high-quality image acquisition and the possibility for systematic quantitative fluorescence lifetime analysis.
Asunto(s)
Artefactos , Oftalmoscopía/métodos , Retina/diagnóstico por imagen , Enfermedades de la Retina/diagnóstico , Adulto , Femenino , Angiografía con Fluoresceína/métodos , Fondo de Ojo , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Tomografía de Coherencia Óptica/métodosRESUMEN
PURPOSE: Short foveal fluorescence lifetimes (fFLT) in geographic atrophy are typically found in eyes with foveal sparing (FS) but may also occur in eyes without FS. We investigated whether short fFLT could serve as a functional biomarker for disease progression in geographic atrophy. METHODS: Thirty three eyes were followed over the course of 4 to 6 years. Foveal sparing was assessed using fluorescence lifetime imaging ophthalmoscopy, optical coherence tomography, fundus Autofluorescence, and macular pigment optical density. RESULTS: Eyes with FS exhibited shorter fFLT compared with eyes without FS. Short fFLT (<600 ps) were measured in all eyes with FS and half of the eyes without FS. Eyes with FS showed a bigger increase in fFLT per year (+39/+30 ps (short spectral channel/long spectral channel) in FS versus +29/+22 ps (short spectral channel/long spectral channel) in non FS). The best-corrected distance visual acuity correlated significantly with fFLT (P = 0.018 and P = 0.005 for short spectral channel/long spectral channel). Macular pigment optical density measurements correlated significantly with fFLT but not in all spectral channels (P ranging from 0.018 to 0.077). CONCLUSION: In geographic atrophy, shorter fFLT are associated with FS but they can also be observed in eyes without FS. Our longitudinal data suggest that shorter fFLT features in eyes with loss of FS represent an earlier stage of disease and may be more prone to loss of the visual acuity.
Asunto(s)
Fóvea Central/diagnóstico por imagen , Atrofia Geográfica/diagnóstico , Oftalmoscopía/métodos , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , Femenino , Angiografía con Fluoresceína/métodos , Estudios de Seguimiento , Fondo de Ojo , Humanos , Masculino , Factores de Tiempo , Tomografía de Coherencia Óptica/métodosRESUMEN
The role of microglia in retinal inflammation is still ambiguous. Branch retinal vein occlusion initiates an inflammatory response whereby resident microglia cells are activated. They trigger infiltration of neutrophils that exacerbate blood-retina barrier damage, regulate postischemic inflammation and irreversible loss of neuroretina. Suppression of microglia-mediated inflammation might bear potential for mitigating functional impairment after retinal vein occlusion (RVO). To test this hypothesis, we depleted microglia by PLX5622 (a selective tyrosine kinase inhibitor that targets the colony-stimulating factor-1 receptor) in fractalkine receptor reporter mice (Cx3cr1gfp/+ ) subjected to various regimens of PLX5622 treatment and experimental RVO. Effectiveness of microglia suppression and retinal outcomes including retinal thickness as well as ganglion cell survival were compared to a control group of mice with experimental vein occlusion only. PLX5622 caused dramatic suppression of microglia. Despite vein occlusion, reappearance of green fluorescent protein positive cells was strongly impeded with continuous PLX5622 treatment and significantly delayed after its cessation. In depleted mice, retinal proinflammatory cytokine signaling was diminished and retinal ganglion cell survival improved by almost 50% compared to nondepleted animals 3 weeks after vein occlusion. Optical coherence tomography suggested delayed retinal degeneration in depleted mice. In summary, findings indicate that suppression of cells bearing the colony-stimulating factor-1 receptor, mainly microglia and monocytes, mitigates ischemic damage and salvages retinal ganglion cells. Blood-retina barrier breakdown seems central in the disease mechanism, and complex interactions between different cell types composing the blood-retina barrier as well as sustained hypoxia might explain why the protective effect was only partial.
Asunto(s)
Inflamación/metabolismo , Retina/patología , Degeneración Retiniana/patología , Oclusión de la Vena Retiniana/patología , Animales , Barrera Hematorretinal/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Ratones , Microglía/metabolismo , Microglía/patología , Receptores del Factor Estimulante de Colonias/antagonistas & inhibidores , Retina/metabolismo , Degeneración Retiniana/metabolismo , Células Ganglionares de la Retina/patología , Oclusión de la Vena Retiniana/metabolismoRESUMEN
PURPOSE: To assess whether retinal thickness measurements with a standard 30° spectral domain optical coherence tomography (SD-OCT) are comparable with wide-field 55° SD-OCT. METHODS: Thirty-three healthy individuals were scanned using 55° as well as 30° SD-OCT according to a standardized protocol. Automated retinal layer segmentation of standard and wide-field SD-OCTs was assessed using customized software. RESULTS: Both lenses showed a high correlation when analyzing total retinal thickness within the central, the inner, and the outer retinal ring (r = > 0.9). Automated thickness measurements with the 55° system were marginally higher compared with the 30° lens. The thickness of each separate retinal layer using automated segmentation showed excellent correlations within the inner and outer rings (range: r = 0.6-r = 0.9 for the inner ring and range: r = 0.9-r = 1.0 for the outer ring). CONCLUSION: Fifty-five degree wide-field SD-OCT provides a good overview of the posterior pole and presents similar quantitative values as a standard 30° OCT lens. Therefore, thickness values are comparable when switching between these two lenses.