Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 141(3): 1373-1381, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30582893

RESUMEN

CuA is a binuclear copper site acting as electron entry port in terminal heme-copper oxidases. In the oxidized form, CuA is a mixed valence pair whose electronic structure can be described using a potential energy surface with two minima, σu* and πu, that are variably populated at room temperature. We report that mutations in the first and second coordination spheres of the binuclear metallocofactor can be combined in an additive manner to tune the energy gap and, thus, the relative populations of the two lowest-lying states. A series of designed mutants span σu*/πu energy gaps ranging from 900 to 13 cm-1. The smallest gap corresponds to a variant with an effectively degenerate ground state. All engineered sites preserve the mixed-valence character of this metal center and the electron transfer functionality. An increase of the Cu-Cu distance less than 0.06 Å modifies the σu*/πu energy gap by almost 2 orders of magnitude, with longer distances eliciting a larger population of the πu state. This scenario offers a stark contrast to synthetic systems, as model compounds require a lengthening of 0.5 Å in the Cu-Cu distance to stabilize the πu state. These findings show that the tight control of the protein environment allows drastic perturbations in the electronic structure of CuA sites with minor geometric changes.


Asunto(s)
Proteínas Bacterianas/química , Complejos de Coordinación/química , Cobre/química , Grupo Citocromo b/química , Complejo IV de Transporte de Electrones/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Grupo Citocromo b/genética , Complejo IV de Transporte de Electrones/genética , Electrones , Estructura Molecular , Ingeniería de Proteínas , Subunidades de Proteína/química , Alineación de Secuencia , Termodinámica , Thermus thermophilus/enzimología
2.
Inorg Chem ; 58(3): 2149-2157, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30644741

RESUMEN

Here we report the spectroscopic and electrochemical characterization of three novel chimeric CuA proteins in which either one or the three loops surrounding the metal ions in the Thermus thermophilus protein have been replaced by homologous human and plant sequences while preserving the set of coordinating amino acids. These conservative modifications mimic basic differences between CuA sites from different organisms and allow for fine tuning the energy gap between alternative electronic ground states of CuA.. This results in a systematic modulation of thermodynamic and kinetic electron transfer (ET) parameters and in the selection of one of two possible redox-active molecular orbitals, which differ in the ET reorganization energy by a factor of 2. Moreover, the ET mechanism is found to be frictionally controlled, and the modifications introduced into the different chimeras do not affect the frictional activation parameter.


Asunto(s)
Cobre/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Thermus thermophilus/metabolismo , Cobre/química , Cristalografía por Rayos X , Técnicas Electroquímicas , Transporte de Electrón , Complejo IV de Transporte de Electrones/química , Cinética , Modelos Moleculares , Termodinámica , Thermus thermophilus/química
3.
J Am Chem Soc ; 139(29): 9803-9806, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28662578

RESUMEN

Manipulation of the partition function (Q) of the redox center CuA from cytochrome c oxidase is attained by tuning the accessibility of a low lying alternative electronic ground state and by perturbation of the electrostatic potential through point mutations, loop engineering and pH variation. We report clear correlations of the entropic and enthalpic contributions to redox potentials with Q and with the identity and hydrophobicity of the weak axial ligand, respectively.


Asunto(s)
Cobre/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Electrones , Termodinámica , Cobre/química , Complejo IV de Transporte de Electrones/química , Entropía , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Oxidación-Reducción , Electricidad Estática
4.
Bioelectrochemistry ; 146: 108095, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35339948

RESUMEN

Copper is a ubiquitous metal in biology that, among other functions, is implicated in enzymatic redox catalysis and in protein electron transfer (ET). When it comes to ET, copper sites are found in two main forms, mononuclear type 1 (T1) and binuclear CuA sites, which share a common cupredoxin fold. Other relevant copper sites are the so-called type 2 (T2), which are more resilient to undergo direct electrochemistry and are usually involved in catalysis. Here we report the electrochemical and spectroscopic characterization of a novel T2-like copper site engineered following the loop swapping strategy. The ligand loop sequence of the newly discovered T1 copper site from Nitrosopumilus maritimus was introduced into the CuA scaffold from Thermus thermophilus yielding a chimeric protein that shows spectroscopic features different from both parental proteins, and resemble those of red T2 copper sites, albeit with a shorter Cu-S(Cys) bond length. The novel T2 site undergoes efficient direct electrochemistry, which allows performing temperature-dependent cyclic voltammetry studies. The obtained results reveal that this chimera constitutes the first example of a copper protein with entropically controlled reduction potential, thereby contrasting the enthalpic supremacy observed for all other copper sites reported so far. The underlying bases for this entropic control are critically discussed.


Asunto(s)
Cobre , Thermus thermophilus , Cobre/química , Transporte de Electrón , Ligandos , Oxidación-Reducción , Thermus thermophilus/química , Thermus thermophilus/metabolismo
5.
FEBS J ; 288(11): 3602-3618, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33369202

RESUMEN

Dye-decolorizing peroxidases (DyPs) constitute a superfamily of heme-containing peroxidases that are related neither to animal nor to plant peroxidase families. These are divided into four classes (types A, B, C, and D) based on sequence features. The active site of DyPs contains two highly conserved distal ligands, an aspartate and an arginine, the roles of which are still controversial. These ligands have mainly been studied in class A-C bacterial DyPs, largely because no effective recombinant expression systems have been developed for the fungal (D-type) DyPs. In this work, we employ ancestral sequence reconstruction (ASR) to resurrect a D-type DyP ancestor, AncDyPD-b1. Expression of AncDyPD-b1 in Escherichia coli results in large amounts of a heme-containing soluble protein and allows for the first mutagenesis study on the two distal ligands of a fungal DyP. UV-Vis and resonance Raman (RR) spectroscopic analyses, in combination with steady-state kinetics and the crystal structure, reveal fine pH-dependent details about the heme active site structure and show that both the aspartate (D222) and the arginine (R390) are crucial for hydrogen peroxide reduction. Moreover, the data indicate that these two residues play important but mechanistically different roles on the intraprotein long-range electron transfer process. DATABASE: Structural data are available in the PDB database under the accession number 7ANV.


Asunto(s)
Colorantes/química , Hongos/enzimología , Peroxidasa/ultraestructura , Arginina/química , Ácido Aspártico/química , Dominio Catalítico/genética , Escherichia coli/genética , Regulación Enzimológica de la Expresión Génica/genética , Peróxido de Hidrógeno/metabolismo , Ligandos , Peroxidasa/química , Peroxidasa/genética , Espectrometría Raman
6.
Chem Sci ; 11(24): 6193-6201, 2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32953013

RESUMEN

Attaining rational modulation of thermodynamic and kinetic redox parameters of metalloproteins is a key milestone towards the (re)design of proteins with new or improved redox functions. Here we report that implantation of ligand loops from natural T1 proteins into the scaffold of a CuA protein leads to a series of distorted T1-like sites that allow for independent modulation of reduction potentials (E°') and electron transfer reorganization energies (λ). On the one hand E°' values could be fine-tuned over 120 mV without affecting λ. On the other, λ values could be modulated by more than a factor of two while affecting E°' only by a few millivolts. These results are in sharp contrast to previous studies that used T1 cupredoxin folds, thus highlighting the importance of the protein scaffold in determining such parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA