Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(10): 6796-6805, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38421320

RESUMEN

Block polymer self-assembly affords a versatile bottom-up strategy to develop materials with the desired properties dictated by specific symmetries and dimensions. Owing to distinct properties compared with linear counterparts, bottlebrush block polymers with side chains densely grafted on a backbone have attracted extensive attention. However, the morphologies found in bottlebrush block polymers so far are limited, and only lamellar and cylindrical ordered phases have been reported in diblock bottlebrushes. The absence of complex morphologies, such as networks, might originate from the intrinsically stiff backbone architecture. We experimentally investigated the morphologies of nonfrustrated ABC bottlebrush block terpolymers, based on two chemistries, poly(ethylene-alt-propylene)-b-polystyrene-b-poly(dl-lactic acid) (PEP-PS-PLA) and PEP-b-PS-b-poly(ethylene oxide) (PEP-PS-PEO), synthesized by ring-opening metathesis polymerization of norbornene-terminated macromonomers. Structural characterization based on small-angle X-ray scattering and transmission electron microscopy measurements revealed an unprecedented cylinders-in-undulating-lamellae (CUL) morphology with p2 symmetry for both systems. Additionally, automated liquid chromatography was employed to fractionate the PEP-PS-PLA bottlebrush polymer, leading to fractions with a spectrum of morphologies, including the CUL. These findings underscore the significance of macromolecular dispersity in nominally narrow dispersity bottlebrush polymers while demonstrating the power of this fractionation technique.

2.
ACS Macro Lett ; 13(6): 695-702, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38767207

RESUMEN

An H-polymer has an architecture that consists of four branches symmetrically attached to the ends of a polymer backbone, similar in shape to the letter "H". Here, a renewable H-polymer efficiently synthesized using only ring-opening transesterification is demonstrated. The strategy relies on a tetrafunctional poly(±-lactide) macroinitiator, from which four poly(±-lactide) branches are grown simultaneously. 1H NMR spectroscopy, size exclusion chromatography (SEC), and matrix-assisted laser desorption/ionization (MALDI) spectrometry were used to verify the macroinitiator purity. Branch growth was probed using 1H NMR spectroscopy and SEC to reveal unique transesterification phenomena that can be controlled to yield architecturally pure or more complex materials. H-shaped PLA was prepared at the multigram scale with a weight-average molar mass Mw > 100 kg/mol and low dispersity D < 1.15. Purification involved routine precipitations steps, which yielded products that were architecturally relatively pure (∼93%). Small-amplitude oscillatory shear and extensional rheology measurements demonstrate the unique viscoelastic behavior associated with the H-shaped architecture.

3.
ACS Macro Lett ; 10(12): 1622-1628, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-35549140

RESUMEN

Graft polymers are useful in a versatile range of material applications. Understanding how changes to the grafted architecture, such as the grafting density (z), the side-chain degree of polymerization (Nsc), and the backbone degree of polymerization (Nbb), affect polymer properties is critical for accurately tuning material performance. For graft-through copolymerizations, changes to Nsc and z are controlled by the macromonomer degree of polymerization (NMM) and the initial fraction of the macromonomer in the feed (fMM0), respectively. We show that changes to these parameters can influence the copolymerization reactivity ratios and, in turn, impact the side-chain distribution along a graft polymer backbone. Poly((±)-lactide) macromonomers with NMM values as low as ca. 1 and as high as 72 were copolymerized with a small-molecule dimethyl ester norbornene comonomer over a range of fMM0 values (0.1 ≤ fMM0 ≤ 0.8) using ring-opening metathesis polymerization (ROMP). Monomer conversion was determined using 1H nuclear magnetic resonance spectroscopy, and the data were fit with terminal and nonterminal copolymerization models. The results from this work provide essential information for manipulating Nsc and z while maintaining synthetic control over the side-chain distribution for graft-through copolymerizations.


Asunto(s)
Polímeros , Peso Molecular , Polimerizacion , Polímeros/química
4.
Acta Biomater ; 90: 205-216, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30954624

RESUMEN

Commercially available surgical sealants for internal use either lack sufficient adhesion or produce cytotoxicity. This work describes a surgical sealant based on a polymer blend of poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) that increases wet tissue adherence by incorporation of nano-to-microscale silica particles, without significantly affecting cell viability, biodegradation rate, or local inflammation. In functional studies, PLGA/PEG/silica composite sealants produce intestinal burst pressures that are comparable to cyanoacrylate glue (160 mmHg), ∼2 times greater than the non-composite sealant (59 mmHg), and ∼3 times greater than fibrin glue (49 mmHg). The addition of silica to PLGA/PEG is compatible with a sprayable in situ deposition method called solution blow spinning and decreases coagulation time in vitro and in vivo. These improvements are biocompatible and cause minimal additional inflammation, demonstrating the potential of a simple composite design to increase adhesion to wet tissue through physical, noncovalent mechanisms and enable use in procedures requiring simultaneous occlusion and hemostasis. STATEMENT OF SIGNIFICANCE: Incorporating silica particles increases the tissue adhesion of a polymer blend surgical sealant. The particles enable interfacial physical bonding with tissue and enhance the flexibility of the bulk of the sealant, without significantly affecting cytotoxicity, inflammation, or biodegradation. These studies also demonstrate how silica particles decrease blood coagulation time. This surgical sealant improves upon conventional devices because it can be easily deposited with accuracy directly onto the surgical site as a solid polymer fiber mat. The deposition method, solution blow spinning, allows for high loading in the composite fibers, which are sprayed from a polymer blend solution containing suspended silica particles. These findings could easily be translated to other implantable or wearable devices due to the versatility of silica particles.


Asunto(s)
Materiales Biocompatibles , Ensayo de Materiales , Poliésteres , Polietilenglicoles , Dióxido de Silicio , Adhesivos Tisulares , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular , Ratones , Poliésteres/química , Poliésteres/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Porcinos , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA