Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 29(Pt 1): 202-213, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985437

RESUMEN

Resonant inelastic X-ray scattering (RIXS) has become an important scientific tool. Nonetheless, conventional high-resolution (few hundred meV or less) RIXS measurements, especially in the soft X-ray range, require low-throughput grating spectrometers, which limits measurement accuracy. Here, the performance of a different method for measuring RIXS, i.e. photoelectron spectrometry for analysis of X-rays (PAX), is computationally investigated. This method transforms the X-ray measurement problem of RIXS to an electron measurement problem, enabling use of high-throughput, compact electron spectrometers. X-rays to be measured are incident on a converter material and the energy distribution of the resultant photoelectrons, the PAX spectrum, is measured with an electron spectrometer. A deconvolution algorithm for analysis of such PAX data is proposed. It is shown that the deconvolution algorithm works well on data recorded with ∼0.5 eV resolution. Additional simulations show the potential of PAX for estimation of RIXS features with smaller widths. For simulations using the 3d levels of Ag as a converter material, and with 105 simulated detected electrons, it is estimated that features with a few hundred meV width can be accurately estimated in a model RIXS spectrum. For simulations using a sharp Fermi edge to encode RIXS spectra, it is estimated that one can accurately distinguish 100 meV FWHM peaks separated by 45 meV with 105 simulated detected electrons that were photoemitted from within 0.4 eV of the Fermi level.

2.
Opt Express ; 28(16): 23545-23553, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32752349

RESUMEN

We design and realize an arrival time diagnostic for ultrashort X-ray pulses achieving unprecedented high sensitivity in the soft X-ray regime via cross-correlation with a ≈1550 nm optical laser. An interferometric detection scheme is combined with a multi-layer sample design to greatly improve the sensitivity of the measurement. We achieve up to 275% of relative signal change when exposed to 1.6 mJ/cm2 of soft X-rays at 530 eV, more than a hundred-fold improvement in sensitivity as compared to previously reported techniques. The resolution of the arrival time measurement is estimated to around 2.8 fs (rms). The demonstrated X-ray arrival time monitor paves the way for sub-10 fs-level timing jitter at high repetition rate X-ray facilities.

3.
Opt Lett ; 44(2): 243-246, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644871

RESUMEN

The normalization of scattered intensity by incident flux is a crucial step in analyzing data from stochastic x-ray free electron laser sources and is complicated by non-linearities traditionally attributed to detector saturation. Here we show that such non-linearities can also arise when the sample spectra are non-uniform within the monochromator bandwidth. A method for modeling and removing this non-linearity using multivariate regression with shot-by-shot x-ray photon energy as an independent variable is presented. This approach demonstrates the benefit of event building and will allow for a reconsideration of data which has proven challenging to normalize.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA