Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Synth Biol ; 12(12): 3531-3543, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38016068

RESUMEN

One challenge in synthetic biology is the tuning of regulatory components within gene circuits to elicit a specific behavior. This challenge becomes more difficult in synthetic microbial consortia since each strain's circuit must function at the intracellular level and their combination must operate at the population level. Here we demonstrate that circuit dynamics can be tuned in synthetic consortia through the manipulation of strain fractions within the community. To do this, we construct a microbial consortium comprised of three strains of engineered Escherichia coli that, when cocultured, use homoserine lactone-mediated intercellular signaling to create a multistrain incoherent type-1 feedforward loop (I1-FFL). Like naturally occurring I1-FFL motifs in gene networks, this engineered microbial consortium acts as a pulse generator of gene expression. We demonstrate that the amplitude of the pulse can be easily tuned by adjusting the relative population fractions of the strains. We also develop a mathematical model for the temporal dynamics of the microbial consortium. This model allows us to identify population fractions that produced desired pulse characteristics, predictions that were confirmed for all but extreme fractions. Our work demonstrates that intercellular gene circuits can be effectively tuned simply by adjusting the starting fractions of each strain in the consortium.


Asunto(s)
Escherichia coli , Consorcios Microbianos , Consorcios Microbianos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Transducción de Señal , Modelos Teóricos , Redes Reguladoras de Genes/genética , Biología Sintética
2.
Water Res ; 197: 117043, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33784608

RESUMEN

As the COVID-19 pandemic continues to affect communities across the globe, the need to contain the spread of the outbreaks is of paramount importance. Wastewater monitoring of the SARS-CoV-2 virus, the causative agent responsible for COVID-19, has emerged as a promising tool for health officials to anticipate outbreaks. As interest in wastewater monitoring continues to grow and municipalities begin to implement this approach, there is a need to further identify and evaluate methods used to concentrate SARS-CoV-2 virus RNA from wastewater samples. Here we evaluate the recovery, cost, and throughput of five different concentration methods for quantifying SARS-CoV-2 virus RNA in wastewater samples. We tested the five methods on six different wastewater samples. We also evaluated the use of a bovine coronavirus vaccine as a process control and pepper mild mottle virus as a normalization factor. Of the five methods we tested head-to-head, we found that HA filtration with bead beating performed the best in terms of sensitivity and cost. This evaluation can serve as a guide for laboratories establishing a protocol to perform wastewater monitoring of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Vacunas contra la COVID-19 , Bovinos , Ciudades , Humanos , Pandemias , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
3.
ACS Synth Biol ; 7(8): 1834-1843, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30040895

RESUMEN

Recent advances in synthetic biology have led to a wealth of well-characterized genetic parts. As parts libraries grow, so too does the potential to create novel multi-input promoters that integrate disparate signals to determine transcriptional output. Our ability to construct such promoters will outpace our ability to characterize promoter performance, due to the vast number of input combinations. In this study, we examine the input-output relations of recently developed synthetic multi-input promoters and describe two methods for predicting their behavior. The first method uses 1-dimensional induction data obtained from experiments on single-input systems to predict the n-dimensional induction responses of systems with n inputs. We demonstrate that this approach accurately predicts Boolean (on/off) responses of multi-input systems consisting of novel chimeric transcription factors and hybrid promoters in Escherichia coli. The second method uses only a small amount of multi-input response data to accurately predict analog system response over the entire landscape of input combinations. Taken together, these methods facilitate the design of synthetic circuits that utilize multi-input promoters.


Asunto(s)
Regiones Promotoras Genéticas/genética , Escherichia coli/genética , Biología Sintética/métodos , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA