Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Pharmacol ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39129178

RESUMEN

BACKGROUND AND PURPOSE: Although our previous data indicated that claudin 18 isoform 2 (CLDN18.2)-targeted chimeric antigen receptor (CAR) T cells displayed remarkable clinical efficacy in CLDN18.2-positive gastric cancer, their efficacy is limited in pancreatic ductal adenocarcinoma (PDAC). The tumour microenvironment (TME) is one of the main obstacles to the efficacy of CAR-T and remodelling the TME may be a possible way to overcome this obstacle. The TME of PDAC is characterized by abundant cancer-related fibroblasts (CAFs), which hinder the infiltration and function of CLDN18.2-targeted CAR-T cells. The expression of fibroblast activation protein alpha (FAP) is an important feature of active CAFs, providing potential targets for eliminating CAFs. EXPERIMENTAL APPROACH: In this study, we generated 10 FAP/CLDN 18.2 dual-targeted CAR-T cells and evaluated their anti-tumour ability in vitro and in vivo. KEY RESULTS: Compared with conventional CAR-T cells, some dual-targeted CAR-T cells showed improved therapeutic effects in mouse pancreatic cancers. Further, dual-targeted CAR-T cells with better anti-tumour effect could suppress the recruitment of myeloid-derived suppressor cells (MDSCs) to improve the immunosuppressive TME, which contributes to the survival of CD8+ T cells. Moreover, dual-targeted CAR-T cells reduced the exhaustion of T cells in transforming TGF-ß dependent manner. CONCLUSION AND IMPLICATIONS: The dual-targeted CAR-T cells obtained enhancement of T effector function, inhibition of T cell exhaustion, and improvement of tumour microenvironment. Our findings provide a theoretical rationale for dual-targeted FAP/CLDN 18.2 CAR-T cells therapy in PDAC.

2.
Biochem Pharmacol ; 212: 115536, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028461

RESUMEN

Previously, we have generated EGFRvIII-targeting CAR-T cells and brought hope for treating advanced breast cancer. However, EGFRvIII-targeting CAR-T cells were defined limited anti-tumor efficacy, which might be due to reduced accumulation, persistence of therapeutic T cells in tumor site of breast cancer. CXCLs were highly expressed in tumor environment of breast cancer and CXCR2 is the main receptor for CXCLs. Here, CXCR2 could significantly improve the trafficking and tumor specific accumulation of CAR-T cells both in vivo and in vitro. However, the anti-tumor effect of CXCR2 CAR-T cells were weaken which might be results of the apoptosis of T cells. Cytokines could stimulate Tcell proliferation, such as interleukin (IL)-15 and IL-18. Then, we generated CXCR2 CAR with synthetic IL-15 or IL-18 production. Co-expressing IL-15 or IL-18 could significantly suppress the exhaustion and apoptosis of T cells and enhanced the anti-tumor activity of CXCR2 CAR-T cells in vivo. Further, coexpression IL-15 or IL-18 in CXCR2 CAR-T cells did not cause toxicity. These findings provide a potential therapy strategy of co-expression IL-15 or IL-18 in CXCR2 CAR-T cells for the treatment of advancing breast cancer in the future.


Asunto(s)
Neoplasias de la Mama , Interleucina-18 , Humanos , Femenino , Interleucina-18/genética , Neoplasias de la Mama/tratamiento farmacológico , Interleucina-15/genética , Interleucina-15/uso terapéutico , Linfocitos T/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA