Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39066143

RESUMEN

The incorporation of automatic segmentation methodologies into dental X-ray images refined the paradigms of clinical diagnostics and therapeutic planning by facilitating meticulous, pixel-level articulation of both dental structures and proximate tissues. This underpins the pillars of early pathological detection and meticulous disease progression monitoring. Nonetheless, conventional segmentation frameworks often encounter significant setbacks attributable to the intrinsic limitations of X-ray imaging, including compromised image fidelity, obscured delineation of structural boundaries, and the intricate anatomical structures of dental constituents such as pulp, enamel, and dentin. To surmount these impediments, we propose the Deformable Convolution and Mamba Integration Network, an innovative 2D dental X-ray image segmentation architecture, which amalgamates a Coalescent Structural Deformable Encoder, a Cognitively-Optimized Semantic Enhance Module, and a Hierarchical Convergence Decoder. Collectively, these components bolster the management of multi-scale global features, fortify the stability of feature representation, and refine the amalgamation of feature vectors. A comparative assessment against 14 baselines underscores its efficacy, registering a 0.95% enhancement in the Dice Coefficient and a diminution of the 95th percentile Hausdorff Distance to 7.494.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Algoritmos , Diente/diagnóstico por imagen
2.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38339491

RESUMEN

Optical coherence tomography angiography (OCTA) offers critical insights into the retinal vascular system, yet its full potential is hindered by challenges in precise image segmentation. Current methodologies struggle with imaging artifacts and clarity issues, particularly under low-light conditions and when using various high-speed CMOS sensors. These challenges are particularly pronounced when diagnosing and classifying diseases such as branch vein occlusion (BVO). To address these issues, we have developed a novel network based on topological structure generation, which transitions from superficial to deep retinal layers to enhance OCTA segmentation accuracy. Our approach not only demonstrates improved performance through qualitative visual comparisons and quantitative metric analyses but also effectively mitigates artifacts caused by low-light OCTA, resulting in reduced noise and enhanced clarity of the images. Furthermore, our system introduces a structured methodology for classifying BVO diseases, bridging a critical gap in this field. The primary aim of these advancements is to elevate the quality of OCTA images and bolster the reliability of their segmentation. Initial evaluations suggest that our method holds promise for establishing robust, fine-grained standards in OCTA vascular segmentation and analysis.


Asunto(s)
Oclusión de la Vena Retiniana , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Reproducibilidad de los Resultados , Oclusión de la Vena Retiniana/diagnóstico , Vasos Retinianos/diagnóstico por imagen , Angiografía
3.
Artículo en Inglés | MEDLINE | ID: mdl-39388322

RESUMEN

The incidence and mortality rates of malignant tumors, such as acute leukemia, have risen significantly. Clinically, hospitals rely on cytological examination of peripheral blood and bone marrow smears to diagnose malignant tumors, with accurate blood cell counting being crucial. Existing automated methods face challenges such as low feature expression capability, poor interpretability, and redundant feature extraction when processing highdimensional microimage data. We propose a novel finegrained classification model, SCKansformer, for bone marrow blood cells, which addresses these challenges and enhances classification accuracy and efficiency. The model integrates the Kansformer Encoder, SCConv Encoder, and Global-Local Attention Encoder. The Kansformer Encoder replaces the traditional MLP layer with the KAN, improving nonlinear feature representation and interpretability. The SCConv Encoder, with its Spatial and Channel Reconstruction Units, enhances feature representation and reduces redundancy. The Global-Local Attention Encoder combines Multi-head Self-Attention with a Local Part module to capture both global and local features. We validated our model using the Bone Marrow Blood Cell FineGrained Classification Dataset (BMCD-FGCD), comprising over 10,000 samples and nearly 40 classifications, developed with a partner hospital. Comparative experiments on our private dataset, as well as the publicly available PBC and ALL-IDB datasets, demonstrate that SCKansformer outperforms both typical and advanced microcell classification methods across all datasets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA