RESUMEN
The synthesis of ultrafine, uniform, well-dispersed functional nanoparticles (NPs) under mild conditions in a controlled manner remains a great challenge. In biological systems, a well-defined biomineralization process is exploited, in which the control over NPs' size, shape and distribution is temporally and spatially regulated by a variety of biomolecules in a confined space. Inspired by this, we embedded proteins into metal-organic frameworks (MOFs) and explored a novel approach to synthesize metallic NPs by taking the synergy of protein-induced biomineralization process and space-confined effect of MOFs. The generation and growth of ultrafine metal NPs (Ag or Au) was induced by the entrapped lysozyme molecules and confined by the ZIF-8 pores. Due to the narrow size distribution and homogeneous spatial distribution of metal NPs, the as-synthesized NPs exhibit remarkably elevated catalytic activity. These findings demonstrate that MOFs can be loaded with specific proteins to selectively deposit inorganic NPs via biomimetic mineralization and these novel kinds of nanohybrid materials may find applications in catalysis, sensing and optics.
RESUMEN
Herein, a facile and generic method is developed to prepare ultrathin, robust nanohybrid capsules by manipulating the dynamic structure of supramolecular nanocoatings on CaCO3 sacrificial templates by incorporating a multivalent-anion substitution process into biomineralization. Above the biomineralization level, multivalent anions, for example, phosphate, sulfate, or citrate, are used to initiate the assembly of polyamine into continuous (nonsegregated) polyamine-anion supramolecular nanocoatings on CaCO3 sacrificial templates. When contacting with the sodium silicate solution, the multivalent anions in the supramolecular nanocoatings are substituted by silicate because of the difference in dissociation behavior, facilitating the structure-reconstruction of supramolecular nanocoatings. At the biomineralization level, the substituted silicate can not only bind to the polyamine through electrostatic and hydrogen bonding interactions but also undergo silicification to generate an interpenetrating silica framework. After dissolution of CaCO3, polyamine-silica nanohybrid capsules bearing an ultrathin wall of â¼10-17 nm in thickness are formed, which exhibit a super-high mechanical strength of â¼2337 MPa in elasticity modulus. The capsules are then utilized for bioreactor construction by encapsulating glucose oxidase. The ultrathin capsule wall facilitates the diffusion of substrates/products and elevates the conversion efficiency, whereas the high mechanical strength ensures the structural integrity of the capsules during multiple-cycle reactions. This method can also be applied for the preparation of ultrathin films on planar substrates, which would open a feasible way to prepare nanohybrid materials with different compositions and shapes.