Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Small ; 20(16): e2308677, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009515

RESUMEN

Fuel cells offer great promise for portable electricity generation, but their use is currently limited by their low durability, excessive operating temperatures, and expensive precious metal electrodes. It is therefore essential to develop fuel cell systems that can perform effectively using more robust electrolyte materials, at reasonable temperatures, with lower-cost electrodes. Recently, proton exchange membrane fuel cells have attracted attention due to their generally favorable chemical stability and quick start-up times. However, in most membrane materials, water is required for proton conduction, severely limiting operational temperatures. Here, for the first time it is demonstrated that when acidified, PAF-1 can conduct protons at high temperatures, via a unique framework diffusion mechanism. It shows that this acidified PAF-1 material can be pressed into pellets with high proton conduction properties even at high temperatures and pellet thickness, highlighting the processibility, and ease of use of this material. Furthermore, a fuel cell is shown with high power density output is possible using a non-precious metal copper electrode. Acid-doped PAF-1 therefore represents a significant step forward in the potential for a broad-purpose fuel cell due to it being cheap, robust, efficient, and easily processible.

2.
Small ; 18(19): e2107491, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35195340

RESUMEN

Real-time observation of the electrochemical mechanistic behavior at various scales offers new insightful information to improve the performance of lithium-ion batteries (LIBs). As complementary to the X-ray-based techniques and electron microscopy-based methodologies, neutron scattering provides additional and unique advantages in materials research, owing to the different interactions with atomic nuclei. The non-Z-dependent elemental contrast, in addition to the high penetration ability and weak interaction with matters, makes neutron scattering an advanced probing tool for the in operando mechanistic studies of LIBs. The neutron-based techniques, such as neutron powder diffraction, small-angle neutron scattering, neutron reflectometry, and neutron imaging, have their distinct functionalities and characteristics regimes. These result in their scopes of application distributed in different battery components and covering the full spectrum of all aspects of LIBs. The review surveys the state-of-the-art developments of real-time investigation of the dynamic evolutions of electrochemically active compounds at various scales using neutron techniques. The atomic-scale, the mesoscopic-scale, and at the macroscopic-scale within LIBs during electrochemical functioning provide insightful information to battery researchers. The authors envision that this review will popularize the applications of neutron-based techniques in LIB studies and furnish important inspirations to battery researchers for the rational design of the new generation of LIBs.

3.
Angew Chem Int Ed Engl ; 59(2): 769-774, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31793140

RESUMEN

Solid-state Li-ion batteries (SSLIBs) have recently attracted substantial attention from scientists for the advantages of better safety performance. However, there are still several key challenges in SSLIBs that need to be addressed, such as low energy density, poor thermal stability or cycle stability, and large interface resistance. This contribution introduces a novel SSLIB with a porous aromatic framework (PAF-1) accommodating LiPF6 that was used as the solid-state electrolyte (SSE) replacing the liquid electrolyte and diaphragm of traditional Li-ion batteries. The charge, discharge capacity, rate performance and cycle stability of the SSLIB were remarkably enhanced.

4.
Nanotechnology ; 29(11): 115703, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29408804

RESUMEN

Here, we report a simple strategy to prepare highly sensitive surface-enhanced Raman spectroscopy (SERS) substrates based on Ag decorated Cu2O nanoparticles by combining two common techniques, viz, thermal oxidation growth of Cu2O nanoparticles and magnetron sputtering fabrication of a Ag nanoparticle film. Methylene blue is used as the Raman analyte for the SERS study, and the substrates fabricated under optimized conditions have very good sensitivity (analytical enhancement factor ∼108), stability, and reproducibility. A linear dependence of the SERS intensities with the concentration was obtained with an R 2 value >0.9. These excellent properties indicate that the substrate has great potential in the detection of biological and chemical substances.

5.
Dalton Trans ; 52(3): 731-736, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36562413

RESUMEN

The construction of functionalized covalent organic frameworks (COFs) is of great significance for broadening their potential applications, but is yet challenging to achieve, especially for three-dimensional (3D) COFs, because the connection of the building organic skeleton must strictly follow the pre-designed topology. Here we present the synthesis of two diamondyne-like 3D COFs (CPOF-2 and CPOF-3) functionalized with acetylene (-CC-) and diacetylene (-CC-CC-), respectively. The obtained COFs show a high crystallinity, permanent porosity, and chemical stability. Furthermore, CPOF-3 exhibited an extremely high volatile iodine uptake (as high as 5.87 g g-1), much higher than that of most reported COF-based adsorbents for iodine capture. Therefore, this study provides a new design principle to obtain high-performance iodine loading porous materials to solve the environmental pollution problem caused by radioactive iodine in the waste of the nuclear industry.

6.
Polymers (Basel) ; 14(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36432931

RESUMEN

The application of rechargeable lithium batteries involves all aspects of our daily life, such as new energy vehicles, computers, watches and other electronic mobile devices, so it is becoming more and more important in contemporary society. However, commercial liquid rechargeable lithium batteries have safety hazards such as leakage or explosion, all-solid-state lithium rechargeable lithium batteries will become the best alternatives. But the biggest challenge we face at present is the large solid-solid interface contact resistance between the solid electrolyte and the electrode as well as the low ionic conductivity of the solid electrolyte. Due to the large relative molecular mass, polymers usually exhibit solid or gel state with good mechanical strength. The intermolecules are connected by covalent bonds, so that the chemical and physical stability, corrosion resistance, high temperature resistance and fire resistance are good. Many researchers have found that polymers play an important role in improving the performance of all-solid-state lithium rechargeable batteries. This review mainly describes the application of polymers in the fields of electrodes, electrolytes, electrolyte-electrode contact interfaces, and electrode binders in all-solid-state lithium rechargeable batteries, and how to improve battery performance. This review mainly introduces the recent applications of polymers in solid-state lithium battery electrodes, electrolytes, electrode binders, etc., and describes the performance of emerging porous polymer materials and materials based on traditional polymers in solid-state lithium batteries. The comparative analysis shows the application advantages and disadvantages of the emerging porous polymer materials in this field which provides valuable reference information for further development.

7.
Front Endocrinol (Lausanne) ; 13: 1087260, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726464

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a series of diseases, involving excessive lipid deposition in the liver and is often accompanied by obesity, diabetes, dyslipidemia, abnormal blood pressure, and other metabolic disorders. In order to more accurately reflect its pathogenesis, an international consensus renamed NAFLD in 2020 as metabolic (dysfunction) associated with fatty liver disease (MAFLD). The changes in diet and lifestyle are recognized the non-drug treatment strategies; however, due to the complex pathogenesis of NAFLD, the current drug therapies are mainly focused on its pathogenic factors, key links of pathogenesis, and related metabolic disorders as targets. There is still a lack of specific drugs. In clinical studies, the common NAFLD treatments include the regulation of glucose and lipid metabolism to protect the liver and anti-inflammation. The NAFLD treatments based on the enterohepatic axis, targeting gut microbiota, are gradually emerging, and various new metabolism-regulating drugs are also under clinical development. Therefore, this review article has comprehensively discussed the research advancements in NAFLD treatment in recent years.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/metabolismo , Dieta
8.
Exp Hematol Oncol ; 11(1): 32, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610628

RESUMEN

BACKGROUND: Chronic myelomonocytic leukemia (CMML) is a rare and heterogeneous hematological malignancy. It has been shown that the molecular abnormalities such as ASXL1, TET2, SETBP1, and SRSF2 mutations are common in Caucasian population. METHODS: We retrospectively analyzed 178 Chinese CMML patients. The targeted next generation sequencing (NGS) was used to evaluate 114 gene variations, and the prognostic factors for OS were determined by COX regression analysis. RESULTS: The CMML patients showed a unique mutational spectrum, including TET2 (36.5%), NRAS (31.5%), ASXL1 (28.7%), SRSF2 (24.7%), and RUNX1 (21.9%). Of the 102 patients with clonal analysis, the ancestral events preferentially occurred in TET2 (18.5%), splicing factors (16.5%), RAS (14.0%), and ASXL1 (7.8%), and the subclonal genes were mainly ASXL1, TET2, and RAS. In addition, the secondary acute myeloid leukemia (sAML) transformed from CMML often had mutations in DNMT3A, ETV6, FLT3, and NPM1, while the primary AML (pAML) demonstrated more mutations in CEBPA, DNMT3A, FLT3, IDH1/2, NPM1, and WT1. It was of note that a series of clones were emerged during the progression from CMML to AML, including DNMT3A, FLT3, and NPM1. By univariate analysis, ASXL1 mutation, intermediate- and high-risk cytogenetic abnormality, CMML-specific prognostic scoring system (CPSS) stratifications (intermediate-2 and high group), and treatment options (best supportive care) predicted for worse OS. Multivariate analysis revealed a similar outcome. CONCLUSIONS: The common mutations in Chinese CMML patients included epigenetic modifiers (TET2 and ASXL1), signaling transduction pathway components (NRAS), and splicing factor (SRSF2). The CMML patients with DNMT3A, ETV6, FLT3, and NPM1 mutations tended to progress to sAML. ASXL1 mutation and therapeutic modalities were independent prognostic factors for CMML.

9.
Stem Cells Int ; 2020: 4689798, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32322278

RESUMEN

BACKGROUND: Progressive ß-cell dysfunction, a major characteristic of type 2 diabetes (T2D), is closely related to the infiltration of inflammatory macrophages within islets. Mesenchymal stem cells (MSCs) have been identified to alleviate ß-cell dysfunction by modulating macrophage phenotype in T2D, but the restoration of ß-cells by a single MSC infusion is relatively transient. Decitabine (DAC) has been reported to polarize macrophages towards the anti-inflammatory phenotype at low doses. We therefore investigated whether low-dose decitabine could enhance the antidiabetic effect of MSCs and further promote the restoration of ß-cell function. METHODS: We induced a T2D mice model by high-fat diets and streptozotocin (STZ) injection. Mice were divided into five groups: the normal group, the T2D group, the DAC group, the MSC group, and the MSC plus DAC group (MD group). We examined the blood glucose and serum insulin levels of mice 1, 2, and 4 weeks after MSC and/or DAC treatment. Dynamic changes in islets and the phenotype of intraislet macrophages were detected via immunofluorescence. In vitro, we explored the effect of MSCs and DAC on macrophage polarization. RESULTS: The blood glucose and serum insulin levels revealed that DAC prolonged the antidiabetic effect of MSCs to 4 weeks in T2D mice. Immunofluorescence staining demonstrated more sustainable morphological and structural amelioration in islets of the MD group than in the MSC group. Interestingly, further analysis showed more alternatively activated macrophages (M2, anti-inflammatory) and fewer classically activated macrophages (M1, proinflammatory) in islets of the MD group 4 weeks after treatment. An in vitro study demonstrated that DAC together with MSCs further polarized macrophages from the M1 to M2 phenotype via the PI3K/AKT pathway. CONCLUSION: These data unveiled that DAC prolonged the antidiabetic effect of MSCs and promoted sustainable ß-cell restoration, possibly by modulating the macrophage phenotype. Our results offer a preferable therapeutic strategy for T2D.

10.
Int J Lab Hematol ; 42(4): 473-481, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32359022

RESUMEN

INTRODUCTION: Paroxysmal Nocturnal Hemoglobinuria (PNH) is an acquired clonal disease of hematopoietic stem cells. It is caused by somatic mutation of the X-linked PIGA gene, resulting in a deficient expression of glycosylphosphatidylinositol-anchored proteins (GPI-APs). In this study, we aimed to explore the diagnostic value of next-generation sequencing (NGS) and potential molecular basis in PNH patients. METHODS: Genomic DNA of 85 PNH patients was analyzed by a 114-gene NGS panel. RESULTS: Mutational analysis of PIGA identified 124 mutations in 92% PNH patients, including 101 distinct mutations and 23 recurrent mutations. Among them, 102 mutations were newly reported. Most mutations were located in exon 2 of PIGA gene, and truncated mutation was the most common one. Other mutations were detected in 26 out of 85 cases, including five cases of DNMT3A variants, four cases of ASXL1 variants, and four cases of U2AF1 variants. Clonal analysis was performed in one case and outlined a linear evolution pattern in classic PNH. There was a positive correlation between number of PIGA mutations and fraction of GPI-APs deficient granulocytes. CONCLUSION: The detection of PIGA mutations and additional variants by targeted NGS not only shed light on the genetic characteristics of PNH, but also provided an important reference value in the diagnosis of PNH at molecular level.


Asunto(s)
Hemoglobinuria Paroxística/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de la Membrana/genética , Mutación , Adolescente , Adulto , Anciano , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Femenino , Hemoglobinuria Paroxística/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Proteínas Represoras/genética , Factor de Empalme U2AF/genética
11.
Cell Mol Immunol ; 15(1): 58-73, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27867196

RESUMEN

As the most prominent clinical drug targets for the inhibition of platelet aggregation, P2Y12 and P2Y13 have been found to be highly expressed in both platelets and macrophages. However, the roles and function of P2Y12/13 in the regulation of macrophage-mediated innate immune responses remain unclear. Here, we demonstrate that adenosine 5'-diphosphate (ADP), the endogenous ligand of P2Y1, P2Y12 and P2Y13, was released both in E. coli-infected mice and from macrophages treated with either lipopolysaccharide (LPS) or Pam3CSK4. Furthermore, the expression of P2Y13 was clearly increased in both LPS-treated macrophages and tuberculosis patients. ADP protected mice from E. coli 0111-induced peritonitis by recruiting more macrophages to the infected sites. Consistent with this, ADP and ADP-treated cell culture medium attracted more macrophages in the transwell assay by enhancing the expression of MCP-1. Nevertheless, P2Y1 is dispensable for ADP-mediated protection against bacterial infection. However, either P2Y12/P2Y13 deficiency or blocking the downstream signaling of P2Y12/P2Y13 blocked the ADP-mediated immune response and allowed more bacteria to persist in the infected mice. Furthermore, extracellular signal-regulated kinase (ERK) phosphorylation was clearly increased by ADP, and this type of activation could be blocked by either forskolin or analogs of cyclic AMP (cAMP) (for example, 8-bromo-cAMP). Accordingly, ADP-induced MCP-1 production and protection against bacterial infection could also be reduced by U0126, forskolin and 8-bromo-cAMP. Overall, our study reveals a relationship between danger signals and innate immune responses, which suggests the potential therapeutic significance of ADP-mediated purinergic signaling in infectious diseases.


Asunto(s)
Adenosina Difosfato/farmacología , Infecciones Bacterianas/enzimología , Infecciones Bacterianas/inmunología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Espacio Extracelular/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Monocitos/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Quimiocina CCL2/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Femenino , Interacciones Huésped-Patógeno/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Monocitos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Células RAW 264.7 , Receptores Purinérgicos P2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA