Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Breed ; 43(7): 53, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37333997

RESUMEN

Oilseed rape (Brassica napus L.; B. napus) is an important oil crop worldwide. However, the genetic mechanisms of B. napus adaptations to low phosphate (P) stress are largely unknown. In this study, a genome-wide association study (GWAS) identified 68 SNPs significantly associated with seed yield (SY) under low P (LP) availability, and 7 SNPs significantly associated with phosphorus efficiency coefficient (PEC) in two trials. Among these SNPs, two, chrC07__39807169 and chrC09__14194798, were co-detected in two trials, and BnaC07.ARF9 and BnaC09.PHT1;2 were identified as candidate genes of them, respectively, by combining GWAS with quantitative reverse-transcription PCR (qRT-PCR). There were significant differences in the gene expression level of BnaC07.ARF9 and BnaC09.PHT1;2 between P-efficient and -inefficiency varieties at LP. SY_LP had a significant positive correlation with the gene expression level of both BnaC07.ARF9 and BnaC09.PHT1;2. BnaC07.ARF9 and BnaA01.PHR1 could directly bind the promoters of BnaA01.PHR1 and BnaC09.PHT1;2, respectively. Selective sweep analysis was conducted between ancient and derived B. napus, and detected 1280 putative selective signals. Within the selected region, a large number of genes related to P uptake, transport, and utilization were detected, such as purple acid phosphatase (PAP) family genes and phosphate transporter (PHT) family genes. These findings provide novel insights into the molecular targets for breeding P efficiency varieties in B. napus. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01399-9.

2.
Mol Breed ; 42(3): 15, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37309408

RESUMEN

Oilseed rape (B. napus) is the main oil crop in China as well as in the world. Nitrogen (N) deficiency significantly reduces the seed yield of B. napus. However, a very few studies involved in the genetic mechanism of seed yield and SY-related traits of B. napus in response to N deficiency. In this study, plant height (PH), branch number per plant (BN), pod number per plant (PN), seed number per pod (SN), 1000-seed weight (SW), and seed yield per plant (SY) were investigated using a B. napus double haploid (BnaTNDH) population derived from a cross between cultivars "Tapidor" and "Ningyou7" grown at an optimal N (ON) and a low N (LN) supplies in three-year field trials. Great variations of SY and related traits were observed in BnaTNDH population under contrasting N supplies. A total of 106 and 110 significant quantitative trait loci (QTLs) were detected for six traits at ON and LN in three field trials, respectively. All of these significant QTLs for the same trait identified in two or three trials were integrated into 20 stable QTLs. A total of 50 consensus QTLs and 53 unique QTLs were obtained from 172 significant QTLs and 20 stable QTLs, including 35 ON-specific QTLs, 29 LN-specific QTLs and 39 constitutive QTLs detected at both ON and LN. cqA3l was integrated from four QTLs for PN, PH, SN, SY at LN, cqC9c was integrated from QTLs for BN, SY, PN at ON and LN. Both cqA3l and cqC9c were detected in three trials. In addition, a total of 194 epistatic interactions, inculding 15 pleiotropic epistatic interactions, were identified. Eight of the 15 pleiotropic epistatic interactions were detected to affect SY. This result may help to better understand the genetic mechanism of yield traits in response to low N and promote the breeding of N-efficient varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01281-0.

3.
Mol Breed ; 42(10): 61, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37313016

RESUMEN

Oilseed rape (Brassica napus L.) is one of the most essential oil crops. Genetic improvement of seed yield (SY) is a major aim of B. napus breeding. Several studies have been reported on the genetic mechanisms of SY of B. napus. Here, a genome-wide association study (GWAS) of SY was conducted using a panel of 403 natural accessions of B. napus, with more than five million high-quality single-nucleotide polymorphisms (SNPs). A total of 1773 significant SNPs were detected associated with SY, and 783 significant SNPs were co-located with previously reported QTLs. The lead SNPs chrA01__8920351 and chrA02__4555979 were jointly detected in Trial 2_2 and Trial 2_mean value, and in Trial 1_2 and Trial 1_mean value, respectively. Subsequently, two candidate genes of BnaA01g17200D and BnaA02g08680D were identified through combining transcriptome, candidate gene association analysis, and haplotype analysis. BnaA09g10430D detected through lead SNP chrA09__5160639 was associated with SY of B. napus. Our results provide valuable information for studying the genetic control of seed yield in B. napus and valuable genes, haplotypes, and cultivars resources for the breeding of high seed yield B. napus cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01332-6.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA