Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Crit Rev Biotechnol ; 43(3): 384-392, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35430946

RESUMEN

Lipids are widely distributed in various tissues of an organism, mainly in plant storage organs (e.g., fruits, seeds, etc.). Lipids are vital biological substances that are involved in: signal transduction, membrane biogenesis, energy storage, and the formation of transmembrane fat-soluble substances. Some lipids and related lipid derivatives could be changed in their: content, location, or physiological activity by the external environment, such as biotic or abiotic stresses. Lipid phosphate phosphatases (LPPs) play important roles in regulating intermediary lipid metabolism and cellular signal response. LPPs can dephosphorylate lipid phosphates containing phosphate monolipid bonds such as: phosphatidic acid, lysophosphatidic acid (LPA), and diacylglycerol pyrophosphate, etc. These processes can change the contents of some important lipid signal mediation such as diacylglycerol and LPA, affecting lipid signal transmission. Here, we summarize the research progress of LPPs in plants, emphasizing the structural and biochemical characteristics of LPPs and their role in spatio-temporal regulation. In the future, more in-depth studies are required to boost our understanding of the key role of plant LPPs and lipid metabolism in: signal regulation, stress tolerance pathway, and plant growth and development.


Asunto(s)
Fosfatidato Fosfatasa , Transducción de Señal , Fosfatidato Fosfatasa/química , Fosfatidato Fosfatasa/metabolismo , Transducción de Señal/fisiología , Ácidos Fosfatidicos , Fosfatos , Metabolismo de los Lípidos
2.
Int J Mol Sci ; 24(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298461

RESUMEN

Rapeseed (Brassica napus L.) is an important crop for edible oil, vegetables, and biofuel. Rapeseed growth and development require a minimum temperature of ~1-3 °C. Notably, frost damage occurs during overwintering, posing a serious threat to the productivity and yield of rapeseed. MYB proteins are important transcription factors (TFs) in plants, and have been proven to be involved in the regulation of stress responses. However, the roles of the MYB TFs in rapeseed under cold stress conditions are yet to be fully elucidated. To better understand the molecular mechanisms of one MYB-like 17 gene, BnaMYBL17, in response to low temperature, the present study found that the transcript level of BnaMYBL17 is induced by cold stress. To characterize the gene's function, the 591 bp coding sequence (CDS) from rapeseed was isolated and stably transformed into rapeseed. The further functional analysis revealed significant sensitivity in BnaMYBL17 overexpression lines (BnaMYBL17-OE) after freezing stress, suggesting its involvement in freezing response. A total of 14,298 differentially expressed genes relative to freezing response were found based on transcriptomic analysis of BnaMYBL17-OE. Overall, 1321 candidate target genes were identified based on differential expression, including Phospholipases C1 (PLC1), FCS-like zinc finger 8 (FLZ8), and Kinase on the inside (KOIN). The qPCR results confirmed that the expression levels of certain genes showed fold changes ranging from two to six when compared between BnaMYBL17-OE and WT lines after exposure to freezing stress. Furthermore, verification indicated that BnaMYBL17 affects the promoter of BnaPLC1, BnaFLZ8, and BnaKOIN genes. In summary, the results suggest that BnaMYBL17 acts as a transcriptional repressor in regulating certain genes related to growth and development during freezing stress. These findings provide valuable genetic and theoretical targets for molecular breeding to enhance freezing tolerance in rapeseed.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Brassica rapa/genética , Regulación de la Expresión Génica de las Plantas , Clonación Molecular
3.
BMC Genomics ; 22(1): 548, 2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34273948

RESUMEN

BACKGROUND: Lipid phosphate phosphatases (LPP) are critical for regulating the production and degradation of phosphatidic acid (PA), an essential signaling molecule under stress conditions. Thus far, the LPP family genes have not been reported in rapeseed (Brassica napus L.). RESULTS: In this study, a genome-wide analysis was carried out to identify LPP family genes in rapeseed that respond to different stress conditions. Eleven BnLPPs genes were identified in the rapeseed genome. Based on phylogenetic and synteny analysis, BnLPPs were classified into four groups (Group I-Group IV). Gene structure and conserved motif analysis showed that similar intron/exon and motifs patterns occur in the same group. By evaluating cis-elements in the promoters, we recognized six hormone- and seven stress-responsive elements. Further, six putative miRNAs were identified targeting three BnLPP genes. Gene ontology analysis disclosed that BnLPP genes were closely associated with phosphatase/hydrolase activity, membrane parts, phosphorus metabolic process, and dephosphorylation. The qRT-PCR based expression profiles of BnLPP genes varied in different tissues/organs. Likewise, several gene expression were significantly up-regulated under NaCl, PEG, cold, ABA, GA, IAA, and KT treatments. CONCLUSIONS: This is the first report to describe the comprehensive genome-wide analysis of the rapeseed LPP gene family. We identified different phytohormones and abiotic stress-associated genes that could help in enlightening the plant tolerance against phytohormones and abiotic stresses. The findings unlocked new gaps for the functional verification of the BnLPP gene family during stresses, leading to rapeseed improvement.


Asunto(s)
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Fosfolipasas , Fosfolípidos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
4.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924156

RESUMEN

Catalase (CAT) is an antioxidant enzyme expressed by the CAT gene family and exists in almost all aerobic organisms. Environmental stresses induce the generation of reactive oxygen species (ROS) that eventually hinder plant growth and development. The CAT enzyme translates the hydrogen peroxide (H2O2) to water (H2O) and reduce the ROS levels to shelter the cells' death. So far, the CAT gene family has not been reported in rapeseed (Brassica napus L.). Therefore, a genome-wide comprehensive analysis was conducted to classify the CAT genes in the rapeseed genome. The current study identified 14 BnCAT genes in the rapeseed genome. Based on phylogenetic and synteny analysis, the BnCATs belong to four groups (Groups I-IV). A gene structure and conserved motif analysis showed that Group I, Group II, and Group IV possess almost the same intron/exon pattern, and an equal number of motifs, while Group III contains diverse structures and contain 15 motifs. By analyzing the cis-elements in the promoters, we identified five hormone-correlated responsive elements and four stress-related responsive elements. Further, six putative bna-miRNAs were also identified, targeting three genes (BnCAT4, BnCAT6, and BnCAT8). Gene ontology (GO) enrichment analysis showed that the BnCAT genes were largely related to cellular organelles, ROS response, stimulus response, stress response, and antioxidant enzymes. Almost 10 BnCAT genes showed higher expression levels in different tissues, i.e., root, leaf, stem, and silique. The expression analysis showed that BnCAT1-BnCAT3 and BnCAT11-BnCAT13 were significantly upregulated by cold, salinity, abscisic acid (ABA), and gibberellic acid (GA) treatment, but not by drought and methyl jasmonate (MeJA). Notably, most of the genes were upregulated by waterlogging stress, except BnCAT6, BnCAT9, and BnCAT10. Our results opened new windows for future investigations and provided insights into the CAT family genes in rapeseed.


Asunto(s)
Brassica napus/genética , Catalasa/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Familia de Multigenes , Reguladores del Crecimiento de las Plantas/farmacología , Estrés Fisiológico/genética , Transcriptoma , Brassica napus/clasificación , Brassica napus/metabolismo , Catalasa/metabolismo , Biología Computacional , Secuencia Conservada , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Motivos de Nucleótidos , Especificidad de Órganos , Filogenia , Regiones Promotoras Genéticas , Especies Reactivas de Oxígeno/metabolismo , Sintenía
5.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31661818

RESUMEN

Salt stress inhibits the production of all crop species, including rapeseed (Brassica napus L.), the second most widely planted oil crop species. Although melatonin was confirmed to alleviate salt stress in rapeseed seedlings recently, the mechanism governing the expression levels remains unknown. Therefore, the melatonin-induced transcriptome variation of salt-stressed seedlings was explored. In this study, the transcriptomes of leaves and roots under control (CK), salt (125 mM NaCl, ST) and melatonin (125 mM NaCl plus 50 µM melatonin, MS) treatments were evaluated by using next-generation sequencing techniques. After conducting comparisons of gene expression in the roots and leaves between MS and ST, the differentially expressed gene (DEG) pools were screened. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighted the significant pathways, which were mainly related to plant hormone synthesis and signal transduction, lignin and fatty acid metabolism. The functional genes in the objective KEGG pathways were identified. Furthermore, members of several transcription factor (TF) families participated in the response process. Combined with the hormone (campesterol (CS), jasmonic acid (JA), and gibberellic acid 3 (GA3)) contents measured in the seedlings, it could be concluded that melatonin induced changes in the intrinsic hormone metabolic network, which promoted seedling growth. Thus, this study identified new candidate genes and pathways active during the interactions between melatonin and salt stress, which provide clues for disclosing melatonin's function in resistance to salt injury. Our results contribute to developing a practical method for sustainable agriculture on saline lands.


Asunto(s)
Brassica napus/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Melatonina/farmacología , Estrés Salino/fisiología , Transcriptoma/efectos de los fármacos , Brassica napus/efectos de los fármacos , Perfilación de la Expresión Génica , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Plantones/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo
6.
Int J Mol Sci ; 19(8)2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110906

RESUMEN

Abiotic stresses greatly influenced wheat productivity executed by environmental factors such as drought, salt, water submergence and heavy metals. The effective management at the molecular level is mandatory for a thorough understanding of plant response to abiotic stress. Understanding the molecular mechanism of stress tolerance is complex and requires information at the omic level. In the areas of genomics, transcriptomics and proteomics enormous progress has been made in the omics field. The rising field of ionomics is also being utilized for examining abiotic stress resilience in wheat. Omic approaches produce a huge amount of data and sufficient developments in computational tools have been accomplished for efficient analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. Though, the incorporation of omic-scale data to address complex genetic qualities and physiological inquiries is as yet a challenge. In this review, we have reported advances in omic tools in the perspective of conventional and present day approaches being utilized to dismember abiotic stress tolerance in wheat. Attention was given to methodologies, for example, quantitative trait loci (QTL), genome-wide association studies (GWAS) and genomic selection (GS). Comparative genomics and candidate genes methodologies are additionally talked about considering the identification of potential genomic loci, genes and biochemical pathways engaged with stress resilience in wheat. This review additionally gives an extensive list of accessible online omic assets for wheat and its effective use. We have additionally addressed the significance of genomics in the integrated approach and perceived high-throughput multi-dimensional phenotyping as a significant restricting component for the enhancement of abiotic stress resistance in wheat.


Asunto(s)
Producción de Cultivos , Productos Agrícolas/genética , Genómica/métodos , Fitomejoramiento , Estrés Fisiológico/genética , Triticum/genética , Productos Agrícolas/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo , Triticum/crecimiento & desarrollo
7.
Breed Sci ; 64(1): 60-73, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24987291

RESUMEN

Water deficit imposed by either drought or salinity brings about severe growth retardation and yield loss of crops. Since Brassica crops are important contributors to total oilseed production, it is urgently needed to develop tolerant cultivars to ensure yields under such adverse conditions. There are various physiochemical mechanisms for dealing with drought and salinity in plants at different developmental stages. Accordingly, different indicators of tolerance to drought or salinity at the germination, seedling, flowering and mature stages have been developed and used for germplasm screening and selection in breeding practices. Classical genetic and modern genomic approaches coupled with precise phenotyping have boosted the unravelling of genes and metabolic pathways conferring drought or salt tolerance in crops. QTL mapping of drought and salt tolerance has provided several dozen target QTLs in Brassica and the closely related Arabidopsis. Many drought- or salt-tolerant genes have also been isolated, some of which have been confirmed to have great potential for genetic improvement of plant tolerance. It has been suggested that molecular breeding approaches, such as marker-assisted selection and gene transformation, that will enhance oil product security under a changing climate be integrated in the development of drought- and salt-tolerant Brassica crops.

8.
Physiol Plant ; 147(2): 181-93, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22607471

RESUMEN

MicroRNAs (miRNAs) are critical post-transcriptional modulators of gene expression involving in plant responses to abiotic stress. However, the regulation of miRNA in the morphological response to waterlogging is poorly understood in maize. In this study, we detected miRNAs and their targets that expressed in waterlogged crown roots of maize seedlings in two inbred lines (Hz32 and Mo17) by RNA sequencing. A total of 61 mature miRNAs were found including 36 known maize (zma) miRNAs and 25 potential novel miRNA candidates. Comparison of miRNA expression in both waterlogged and control crown roots revealed 32 waterlogging-responsive miRNAs, most were consistently downregulated under waterlogging in the two inbred lines. We identified the miRNA targets through degradome sequencing. Many known miRNA targets involving in transcription regulation and reactive oxygen species elimination were found in the degradome libraries, and 17 targets of 10 newly detected miRNAs were identified as well. Moreover, the miRNA-mediated pathways that respond to waterlogging and regulate the induction of crown roots were discussed. This study is a comprehensive survey of responsive miRNAs in waterlogged maize crown roots. The results will help to understand the miRNA expression in response to waterlogging and miRNA-mediated regulation of morphological adaptation to waterlogging in maize.


Asunto(s)
MicroARNs/genética , Raíces de Plantas/fisiología , ARN de Planta/genética , Agua/fisiología , Zea mays/genética , Adaptación Fisiológica/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Plantones/genética , Plantones/fisiología , Análisis de Secuencia de ARN , Estrés Fisiológico , Zea mays/fisiología
9.
Int J Mol Sci ; 14(2): 2637-51, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23358252

RESUMEN

Although rapeseed (Brassica napus L.) is known to be affected by waterlogging, the genetic basis of waterlogging tolerance by rapeseed is largely unknown. In this study, the transcriptome under 0 h and 12 h of waterlogging was assayed in the roots of ZS9, a tolerant variety, using digital gene expression (DGE). A total of 4432 differentially expressed genes were identified, indicating that the response to waterlogging in rapeseed is complicated. The assignments of the annotated genes based on GO (Gene Ontology) revealed there were more genes induced under waterlogging in "oxidation reduction", "secondary metabolism", "transcription regulation", and "translation regulation"; suggesting these four pathways are enhanced under waterlogging. Analysis of the 200 most highly expressed genes illustrated that 144 under normal conditions were down-regulated by waterlogging, while up to 191 under waterlogging were those induced in response to stress. The expression of genes involved under waterlogging is mediated by multiple levels of transcriptional, post-transcriptional, translational and post-translational regulation, including phosphorylation and protein degradation; in particular, protein degradation might be involved in the negative regulation in response to this stress. Our results provide new insight into the response to waterlogging and will help to identify important candidate genes.

10.
Front Plant Sci ; 13: 775692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371155

RESUMEN

Rapeseed (Brassica napus L.) is an important oilseed crop worldwide. However, its productivity is significantly affected by various abiotic stresses, including cold stress. Among various stresses, cold stress is an important abiotic factor affecting plant growth, yield, and quality. The calcium channels are regarded as key pathways affecting cold tolerance in plants. Thus, improvement in cold tolerance is of great significance for crop improvement. The current study was designed to examine the beneficial role of exogenous inositol in improving cold stress tolerance in rapeseed. From the RNA-seq results, we identified 35 differently expressed genes encoding different inositol enzymes. The results show that inositol (a cyclic polyol) positively regulated cold tolerance by increasing calcium ion (Ca2+) influx in rapeseed. Furthermore, we found that the expression of calcineurin B-like (CBL1) gene was inhibited by inositol. On the other hand, overexpressed plant mediated the Ca2+ flux under cold stress suggesting the key role of inositol-Ca2+ pathway in cold tolerance. Moreover, the overexpression of BnCBL1-2 in Arabidopsis represented that transgenic plants mediated the Ca2+ flux highlighting the vital role of the inositol-Ca2+ pathway in conferring cold stress. Our study provides new insights into rapeseed cold tolerance mechanism and introduces a feasible method to improve the cold tolerance of rapeseed quickly.

11.
Front Plant Sci ; 13: 1050995, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452101

RESUMEN

Brassica napus L. (B. napus) is a vital oilseed crop cultivated worldwide; low temperature (LT) is one of the major stress factors that limit its growth, development, distribution, and production. Even though processes have been developed to characterize LT-responsive genes, only limited studies have exploited the molecular response mechanisms in B. napus. Here the transcriptome data of an elite B. napus variety with LT adaptability was acquired and applied to investigate the gene expression profiles of B. napus in response to LT stress. The bioinformatics study revealed a total of 79,061 unigenes, of which 3,703 genes were differentially expressed genes (DEGs), with 2,129 upregulated and 1,574 downregulated. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis pinpointed that the DEGs were enriched in LT-stress-responsive biological functions and metabolic pathways, which included sugar metabolism, antioxidant defense system, plant hormone signal transduction, and photosynthesis. Moreover, a group of LT-stress-responsive transcription factors with divergent expression patterns under LT was summarized. A combined protein interaction suggested that a complex interconnected regulatory network existed in all detected pathways. RNA-seq data was verified using real-time quantitative polymerase chain reaction analysis. Based on these findings, we presented a hypothesis model illustrating valuable information for understanding the LT response mechanisms in B. napus.

12.
Front Plant Sci ; 13: 857980, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360297

RESUMEN

Cold stress (CS) severely affects several physiological, biochemical, and molecular mechanisms and limits the growth and production of rapeseed (Brassica napus L.). Trehalose (Tre) acts as a growth modulator, which is extensively used to improve the tolerance to multiple plant stresses. Further, Tre also serves as an external force in inducing plant signaling molecules, regulating the expression of stress-responsive genes, and enhancing the CS tolerance in plants. Nevertheless, the importance of exogenous Tre in improving the CS tolerance in rapeseed is still unclear. Therefore, the current study was designed to get mechanistic insights into Tre-mediated CS tolerance in rapeseed seedlings. To explore the Tre role, we designed four treatments [control (CK), CK + 20 mM L-1 Tre, Cold, and Cold + 20 mM L-1 Tre] and three CS conditions (4, 0, and -4°C). The results showed that Tre treatments significantly mitigated the adverse effects of CS on the seedlings and increased the survival rate of Tre-treated seedlings under CS conditions. The exogenous Tre dramatically increased the contents of osmoprotectants, including the soluble sugar (SS), soluble protein (SP), and proline (Pro), and the activities of antioxidant enzymes, such as catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX) were also increased under CS conditions. Additionally, Tre decreased the malondialdehyde (MDA) contents to protect the rapeseed seedlings. Moreover, Tre also remarkably augmented the expression levels of antioxidant genes (CAT12, POD34, and FSD7), CS-responsive marker genes (CBF1, CBF2, CBF4, COR6.6, COR15, COR25, COL1, and KIN1), and Tre-biosynthesis genes (TPS4, TPS8, and TPS9). Briefly, exogenous Tre not only regulates the antioxidant and osmotic balance, but it also significantly participates in Tre metabolism and signaling network to improve the CS tolerance in rapeseed. Thus, Tre-induced supervisory connections between physiological or/and biochemical attributes provide information to dissect the mechanisms of Tre-mediated CS tolerance.

13.
Ann Bot ; 108(7): 1323-35, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21969257

RESUMEN

BACKGROUND: In animals, prolyl 4-hydroxylases (P4Hs) are regarded as oxygen sensors under hypoxia stress, but little is known about their role in the response to waterlogging in maize. METHODS: A comprehensive genome-wide analysis of P4H genes of maize (zmP4H genes) was carried out, including gene structures, phylogeny, protein motifs, chromosomal locations and expression patterns under waterlogging. KEY RESULTS: Nine zmP4H genes were identified in maize, of which five were alternatively spliced into at least 19 transcripts. Different alternative splicing (AS) events were revealed in different inbred lines, even for the same gene, possibly because of organ and developmental specificities or different stresses. The signal strength of splice sites was strongly correlated with selection of donor and receptor sites, and ambiguous junction sites due to small direct repeats at the exon/intron junction frequently resulted in the selection of unconventional splicing sites. Eleven out of 14 transcripts resulting from AS harboured a premature termination codon, rendering them potential candidates for nonsense-mediated RNA degradation. Reverse transcription-PCR (RT-PCR) indicated that zmP4H genes displayed different expression patterns under waterlogging. The diverse transcripts generated from AS were expressed at different levels, suggesting that zmP4H genes were under specific control by post-transcriptional regulation under waterlogging stress in the line HZ32. CONCLUSIONS: Our results provide a framework for future dissection of the function of the emerging zmP4H family and suggest that AS might have an important role in the regulation of the expression profile of this gene family under waterlogging stress.


Asunto(s)
Deshidratación/genética , Procolágeno-Prolina Dioxigenasa/genética , Zea mays/enzimología , Zea mays/genética , Empalme Alternativo , Secuencia de Aminoácidos , Deshidratación/enzimología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Datos de Secuencia Molecular , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Plantones/enzimología , Plantones/genética , Transducción de Señal
14.
Front Plant Sci ; 12: 721681, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691103

RESUMEN

Rapeseed (Brassica napus L.) is an important oilseed crop in the world. Its productivity is significantly influenced by numerous abiotic stresses, including cold stress (CS). Consequently, enhancement in CS tolerance is becoming an important area for agricultural investigation and crop improvement. Therefore, the current study aimed to identify the stress-responsive genes, metabolites, and metabolic pathways based on a combined transcriptome and metabolome analysis to understand the CS responses and tolerance mechanisms in the cold-tolerant (C18) and cold-sensitive (C6) rapeseed varieties. Based on the metabolome analysis, 31 differentially accumulated metabolites (DAMs) were identified between different comparisons of both varieties at the same time points. From the transcriptome analysis, 2,845, 3,358, and 2,819 differentially expressed genes (DEGs) were detected from the comparison of C6-0 vs. C18-0, C6-1 vs. C18-1, and C6-7 vs. C18-7. By combining the transcriptome and metabolome data sets, we found that numerous DAMs were strongly correlated with several differentially expressed genes (DEGs). A functional enrichment analysis of the DAMs and the correlated DEGs specified that most DEGs and DAMs were mainly enriched in diverse carbohydrates and amino acid metabolisms. Among them, starch and sucrose metabolism and phenylalanine metabolism were significantly enriched and played a vital role in the CS adaption of rapeseed. Six candidate genes were selected from the two pathways for controlling the adaption to low temperature. In a further validation, the T-DNA insertion mutants of their Arabidopsis homologous, including 4cl3, cel5, fruct4, ugp1, axs1, and bam2/9, were characterized and six lines differed significantly in levels of freezing tolerance. The outcome of the current study provided new prospects for the understanding of the molecular basis of CS responses and tolerance mechanisms in rapeseed and present a set of candidate genes for use in improving CS adaptability in the same plant.

15.
Antioxidants (Basel) ; 10(8)2021 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-34439430

RESUMEN

Superoxide dismutase (SOD) is an important enzyme that acts as the first line of protection in the plant antioxidant defense system, involved in eliminating reactive oxygen species (ROS) under harsh environmental conditions. Nevertheless, the SOD gene family was yet to be reported in rapeseed (Brassica napus L.). Thus, a genome-wide investigation was carried out to identify the rapeseed SOD genes. The present study recognized 31 BnSOD genes in the rapeseed genome, including 14 BnCSDs, 11 BnFSDs, and six BnMSDs. Phylogenetic analysis revealed that SOD genes from rapeseed and other closely related plant species were clustered into three groups based on the binding domain with high bootstrap values. The systemic analysis exposed that BnSODs experienced segmental duplications. Gene structure and motif analysis specified that most of the BnSOD genes displayed a relatively well-maintained exon-intron and motif configuration within the same group. Moreover, we identified five hormones and four stress- and several light-responsive cis-elements in the promoters of BnSODs. Thirty putative bna-miRNAs from seven families were also predicted, targeting 13 BnSODs. Gene ontology annotation outcomes confirm the BnSODs role under different stress stimuli, cellular oxidant detoxification processes, metal ion binding activities, SOD activity, and different cellular components. Twelve BnSOD genes exhibited higher expression profiles in numerous developmental tissues, i.e., root, leaf, stem, and silique. The qRT-PCR based expression profiling showed that eight genes (BnCSD1, BnCSD3, BnCSD14, BnFSD4, BnFSD5, BnFSD6, BnMSD2, and BnMSD10) were significantly up-regulated under different hormones (ABA, GA, IAA, and KT) and abiotic stress (salinity, cold, waterlogging, and drought) treatments. The predicted 3D structures discovered comparable conserved BnSOD protein structures. In short, our findings deliver a foundation for additional functional investigations on the BnSOD genes in rapeseed breeding programs.

16.
Front Genet ; 12: 794297, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868279

RESUMEN

TCP proteins are plant-specific transcription factors that have multipurpose roles in plant developmental procedures and stress responses. Therefore, a genome-wide analysis was performed to categorize the TCP genes in the rapeseed genome. In this study, a total of 80 BnTCP genes were identified in the rapeseed genome and grouped into two main classes (PCF and CYC/TB1) according to phylogenetic analysis. The universal evolutionary analysis uncovered that BnTCP genes had experienced segmental duplications and positive selection pressure. Gene structure and conserved motif examination presented that Class I and Class II have diverse intron-exon patterns and motifs numbers. Overall, nine conserved motifs were identified and varied from 2 to 7 in all TCP genes; and some of them were gene-specific. Mainly, Class II (PCF and CYC/TB1) possessed diverse structures compared to Class I. We identified four hormone- and four stress-related responsive cis-elements in the promoter regions. Moreover, 32 bna-miRNAs from 14 families were found to be targeting 21 BnTCPs genes. Gene ontology enrichment analysis presented that the BnTCP genes were primarily related to RNA/DNA binding, metabolic processes, transcriptional regulatory activities, etc. Transcriptome-based tissue-specific expression analysis showed that only a few genes (mainly BnTCP9, BnTCP22, BnTCP25, BnTCP48, BnTCP52, BnTCP60, BnTCP66, and BnTCP74) presented higher expression in root, stem, leaf, flower, seeds, and silique among all tested tissues. Likewise, qRT-PCR-based expression analysis exhibited that BnTCP36, BnTCP39, BnTCP53, BnTCP59, and BnTCP60 showed higher expression at certain time points under various hormones and abiotic stress conditions but not by drought and MeJA. Our results opened the new groundwork for future understanding of the intricate mechanisms of BnTCP in various developmental processes and abiotic stress signaling pathways in rapeseed.

17.
BMC Plant Biol ; 10: 189, 2010 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-20738849

RESUMEN

BACKGROUND: Plants respond to low oxygen stress, particularly that caused by waterlogging, by altering transcription and translation. Previous studies have mostly focused on revealing the mechanism of the response at the early stage, and there is limited information about the transcriptional profile of genes in maize roots at the late stage of waterlogging. The genetic basis of waterlogging tolerance is largely unknown. In this study, the transcriptome at the late stage of waterlogging was assayed in root cells of the tolerant inbred line HZ32, using suppression subtractive hybridization (SSH). A forward SSH library using RNA populations from four time points (12 h, 16 h, 20 h and 24 h) after waterlogging treatment was constructed to reveal up-regulated genes, and transcriptional and linkage data was integrated to identify candidate genes for waterlogging tolerance. RESULTS: Reverse Northern analysis of a set of 768 cDNA clones from the SSH library revealed a large number of genes were up-regulated by waterlogging. A total of 465 ESTs were assembled into 296 unigenes. Bioinformatic analysis revealed that the genes were involved in complex pathways, such as signal transduction, protein degradation, ion transport, carbon and amino acid metabolism, and transcriptional and translational regulation, and might play important roles at the late stage of the response to waterlogging. A significant number of unigenes were of unknown function. Approximately 67% of the unigenes could be aligned on the maize genome and 63 of them were co-located within reported QTLs. CONCLUSION: The late response to waterlogging in maize roots involves a broad spectrum of genes, which are mainly associated with two response processes: defense at the early stage and adaption at the late stage. Signal transduction plays a key role in activating genes related to the tolerance mechanism for survival during prolonged waterlogging. The crosstalk between carbon and amino acid metabolism reveals that amino acid metabolism performs two main roles at the late stage: the regulation of cytoplasmic pH and energy supply through breakdown of the carbon skeleton.


Asunto(s)
Perfilación de la Expresión Génica , Raíces de Plantas/genética , Agua/metabolismo , Zea mays/genética , Análisis por Conglomerados , ADN Complementario/genética , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Genes de Plantas , Raíces de Plantas/metabolismo , Sitios de Carácter Cuantitativo , ARN de Planta/genética , Plantones/genética , Análisis de Secuencia de ADN , Transducción de Señal
18.
Front Plant Sci ; 11: 971, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676095

RESUMEN

Cold treatment (vernalization) is required for winter crops such as rapeseed (Brassica napus L.). However, excessive exposure to low temperature (LT) in winter is also a stress for the semi-winter, early-flowering rapeseed varieties widely cultivated in China. Photosynthetic efficiency is one of the key determinants, and thus a good indicator for LT tolerance in plants. So far, the genetic basis underlying photosynthetic efficiency is poorly understood in rapeseed. Here the current study used Associative Transcriptomics to identify genetic loci controlling photosynthetic gas exchange parameters in a diversity panel comprising 123 accessions. A total of 201 significant Single Nucleotide Polymorphisms (SNPs) and 147 Gene Expression Markers (GEMs) were detected, leading to the identification of 22 candidate genes. Of these, Cab026133.1, an ortholog of the Arabidopsis gene AT2G29300.2 encoding a tropinone reductase (BnTR1), was further confirmed to be closely linked to transpiration rate. Ectopic expressing BnTR1 in Arabidopsis plants significantly increased the transpiration rate and enhanced LT tolerance under freezing conditions. Also, a much higher level of alkaloids content was observed in the transgenic Arabidopsis plants, which could help protect against LT stress. Together, the current study showed that AT is an effective approach for dissecting LT tolerance trait in rapeseed and that BnTR1 is a good target gene for the genetic improvement of LT tolerance in plant.

19.
Plants (Basel) ; 8(2)2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30704089

RESUMEN

Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO2 or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.

20.
J Plant Physiol ; 240: 153007, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31310905

RESUMEN

Previous studies have proven that graphene oxide (GO) regulates abscisic acid (ABA) and indole-3-acetic acid (IAA) contents and modulates plant root growth. To better understand the mechanism of plant growth and development regulated by GO and crosstalk between ABA and GO, Zhongshuang No. 9 seedlings were treated with GO and ABA. The results indicated that GO and ABA significantly affected the morphological properties and endogenous phytohormone contents in seedlings, and there was significant crosstalk between GO and ABA. ABA treatments combined with GO led to a rapid decrease in triphenyltetrazolium chloride (TTC) reduction intensity, and the inhibitory effect was enhanced with increasing ABA concentration. The treatments significantly affected the transcriptional levels of some key genes involved in the ABA, IAA, cytokinin (CTK), salicylic acid (SA), and ethane (ETH) pathways and increased the ABA and gibberellin (GA) contents in rapeseed seedlings. The effects of the treatments on the IAA and CTK contents were complex, but, importantly, the treatments suppressed root elongation. Correlation analysis also indicated that the relationship between root length and IAA/ABA could be described by a polynomial function: y = 88.11x2 - 25.15x + 4.813(R²â€¯= 0.912). The treatments increased the ACS2 transcript abundance for ETH biosynthesis and the ICS1 transcriptional level of the key genes involved in salicylic acid (SA) biosynthesis, as well as the downstream signaling genes CBP60 and SARD1. This finding indicated that ABA is an important factor regulating the effects of GO on the growth and development of Brassica napus L., and that ETH and SA pathways may be potential pathways involved in the response of rape seedlings to GO treatment.


Asunto(s)
Ácido Abscísico/administración & dosificación , Brassica napus/crecimiento & desarrollo , Grafito/administración & dosificación , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas , Ácido Abscísico/metabolismo , Brassica napus/efectos de los fármacos , Brassica napus/enzimología , Brassica napus/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA