Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Small ; 19(32): e2300730, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37078833

RESUMEN

In2 O3 , an n-type semiconducting transparent transition metal oxide, possesses a surface electron accumulation layer (SEAL) resulting from downward surface band bending due to the presence of ubiquitous oxygen vacancies. Upon annealing In2 O3 in ultrahigh vacuum or in the presence of oxygen, the SEAL can be enhanced or depleted, as governed by the resulting density of oxygen vacancies at the surface. In this work, an alternative route to tune the SEAL by adsorption of strong molecular electron donors (specifically here ruthenium pentamethylcyclopentadienyl mesitylene dimer, [RuCp*mes]2 ) and acceptors (here 2,2'-(1,3,4,5,7,8-hexafluoro-2,6-naphthalene-diylidene)bis-propanedinitrile, F6 TCNNQ) is demonstrated. Starting from an electron-depleted In2 O3 surface after annealing in oxygen, the deposition of [RuCp*mes]2 restores the accumulation layer as a result of electron transfer from the donor molecules to In2 O3 , as evidenced by the observation of (partially) filled conduction sub-bands near the Fermi level via angle-resolved photoemission spectroscopy, indicating the formation of a 2D electron gas due to the SEAL. In contrast, when F6 TCNNQ is deposited on a surface annealed without oxygen, the electron accumulation layer vanishes and an upward band bending is generated at the In2 O3 surface due to electron depletion by the acceptor molecules. Hence, further opportunities to expand the application of In2 O3 in electronic devices are revealed.

2.
Phys Rev Lett ; 127(24): 246401, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34951794

RESUMEN

In contrast to the common conception that the interfacial energy-level alignment is affixed once the interface is formed, we demonstrate that heterojunctions between organic semiconductors and metal-halide perovskites exhibit huge energy-level realignment during photoexcitation. Importantly, the photoinduced level shifts occur in the organic component, including the first molecular layer in direct contact with the perovskite. This is caused by charge-carrier accumulation within the organic semiconductor under illumination and the weak electronic coupling between the junction components.

3.
Phys Chem Chem Phys ; 18(5): 4045-50, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26775613

RESUMEN

Mechanisms of charge transport between the interconnector and its neighboring layers in tandem organic photovoltaic cells have been systematically investigated by studying electronic properties of the involving interfaces with photoelectron spectroscopies and performance of the corresponding devices. The results show that charge recombination occurs at HATCN and its neighboring hole transport layers which can be deposited at low temperature. The hole transport layer plays an equal role to the interconnector itself. These insights provide guidance for the identification of new materials and the device architecture for high performance devices.

4.
ACS Energy Lett ; 8(10): 4304-4314, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37854052

RESUMEN

In perovskite solar cells (PSCs) energy level alignment and charge extraction at the interfaces are the essential factors directly affecting the device performance. In this work, we present a modified interface between all-inorganic CsPbI3 perovskite and its hole-selective contact (spiro-OMeTAD), realized by the dipole molecule trioctylphosphine oxide (TOPO), to align the energy levels. On a passivated perovskite film, with n-octylammonium iodide (OAI), we created an upward surface band-bending at the interface by TOPO treatment. This improved interface by the dipole molecule induces a better energy level alignment and enhances the charge extraction of holes from the perovskite layer to the hole transport material. Consequently, a Voc of 1.2 V and a high-power conversion efficiency (PCE) of over 19% were achieved for inorganic CsPbI3 perovskite solar cells. Further, to demonstrate the effect of the TOPO dipole molecule, we present a layer-by-layer charge extraction study by a transient surface photovoltage (trSPV) technique accomplished by a charge transport simulation.

5.
Mater Horiz ; 9(1): 17-24, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34816849

RESUMEN

We have witnessed tremendous progress of metal halide perovskite (MHP)-based optoelectronic devices, especially in the field of photovoltaics. Despite intensive research in the past few years, questions still remain regarding their fundamental optoelectronic properties, among which the electronic properties exhibit an interplay of numerous phenomena that deserve serious scrutiny. In this Focus article, we aim to provide a contemporary understanding of the unique electronic properties that has been resolved by the community. First introducing some of the basic concepts established in semiconductor physics, the intrinsic and extrinsic electronic properties of the MHPs are disentangled and explained. With this, the complex interplay of interface-, dopant-, and surface state-induced electronic states in determining the electrostatic landscape in the material can be comprehended, and the energy level alignment in device architectures more reliably assessed.

6.
Nat Commun ; 13(1): 7454, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460635

RESUMEN

Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C60 interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C60 interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110 mV, and retain >97% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.

7.
ACS Appl Mater Interfaces ; 14(25): 28985-28996, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35695840

RESUMEN

Surface-defect passivation is key to achieving a high photoluminescence quantum yield in lead halide perovskite nanocrystals. However, in perovskite light-emitting diodes, these surface ligands also have to enable balanced charge injection into the nanocrystals to yield high efficiency and operational lifetime. In this respect, alkaline halides have been reported to passivate surface trap states and increase the overall stability of perovskite light emitters. On the one side, the incorporation of alkaline ions into the lead halide perovskite crystal structure is considered to counterbalance cation vacancies, whereas on the other side, the excess halides are believed to stabilize the colloids. Here, we report an organic lithium salt, viz. LiTFSI, as a halide-free surface passivation on perovskite nanocrystals. We show that treatment with LiTFSI has multiple beneficial effects on lead halide perovskite nanocrystals and LEDs derived from them. We obtain a higher photoluminescence quantum yield and a longer exciton lifetime and a radiation pattern that is more favorable for light outcoupling. The ligand-induced dipoles on the nanocrystal surface shift their energy levels toward a lower hole-injection barrier. Overall, these effects add up to a 4- to 7-fold boost of the external quantum efficiency in proof-of-concept LED structures, depending on the color of the used lead halide perovskite nanocrystal emitters.

8.
Adv Mater ; 33(23): e2100211, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33938045

RESUMEN

Understanding and controlling the energy level alignment at interfaces with metal halide perovskites (MHPs) is essential for realizing the full potential of these materials for use in optoelectronic devices. To date, however, the basic electronic properties of MHPs are still under debate. Particularly, reported Fermi level positions in the energy gap vary from indicating strong n- to strong p-type character for nominally identical materials, raising serious questions about intrinsic and extrinsic defects as dopants. ​In this work, photoemission experiments demonstrate that thin films of the prototypical methylammonium lead triiodide (MAPbI3 ) behave like an intrinsic semiconductor in the absence of oxygen. Oxygen is then shown to be able to reversibly diffuse into and out of the MAPbI3 bulk, requiring rather long saturation timescales of ≈1 h (in: ambient air) and over 10 h (out: ultrahigh vacuum), for few 100 nm thick films. Oxygen in the bulk leads to pronounced p-doping, positioning the Fermi level universally ≈0.55 eV above the valence band maximum. The key doping mechanism is suggested to be molecular oxygen substitution of iodine vacancies, supported by density functional theory calculations. This insight rationalizes previous and future electronic property studies of MHPs and calls for meticulous oxygen exposure protocols.

9.
RSC Adv ; 10(30): 17534-17542, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35515637

RESUMEN

The remarkable progress of metal halide perovskites in photovoltaics has led to the power conversion efficiency approaching 26%. However, practical applications of perovskite-based solar cells are challenged by the stability issues, of which the most critical one is photo-induced degradation. Bare CH3NH3PbI3 perovskite films are known to decompose rapidly, with methylammonium and iodine as volatile species and residual solid PbI2 and metallic Pb, under vacuum under white light illumination, on the timescale of minutes. We find, in agreement with previous work, that the degradation is non-uniform and proceeds predominantly from the surface, and that illumination under N2 and ambient air (relative humidity 20%) does not induce substantial degradation even after several hours. Yet, in all cases the release of iodine from the perovskite surface is directly identified by X-ray photoelectron spectroscopy. This goes in hand with a loss of organic cations and the formation of metallic Pb. When CH3NH3PbI3 films are covered with a few nm thick organic capping layer, either charge selective or non-selective, the rapid photodecomposition process under ultrahigh vacuum is reduced by more than one order of magnitude, and becomes similar in timescale to that under N2 or air. We conclude that the light-induced decomposition reaction of CH3NH3PbI3, leading to volatile methylammonium and iodine, is largely reversible as long as these products are restrained from leaving the surface. This is readily achieved by ambient atmospheric pressure, as well as a thin organic capping layer even under ultrahigh vacuum. In addition to explaining the impact of gas pressure on the stability of this perovskite, our results indicate that covalently "locking" the position of perovskite components at the surface or an interface should enhance the overall photostability.

10.
ACS Nano ; 14(2): 1445-1456, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31909973

RESUMEN

Perovskite solar cells are among the most exciting photovoltaic systems as they combine low recombination losses, ease of fabrication, and high spectral tunability. The Achilles heel of this technology is the device stability due to the ionic nature of the perovskite crystal, rendering it highly hygroscopic, and the extensive diffusion of ions especially at increased temperatures. Herein, we demonstrate the application of a simple solution-processed perfluorinated self-assembled monolayer (p-SAM) that not only enhances the solar cell efficiency, but also improves the stability of the perovskite absorber and, in turn, the solar cell under increased temperature or humid conditions. The p-i-n-type perovskite devices employing these SAMs exhibited power conversion efficiencies surpassing 21%. Notably, the best performing devices are stable under standardized maximum power point operation at 85 °C in inert atmosphere (ISOS-L-2) for more than 250 h and exhibit superior humidity resilience, maintaining ∼95% device performance even if stored in humid air in ambient conditions over months (∼3000 h, ISOS-D-1). Our work, therefore, demonstrates a strategy towards efficient and stable perovskite solar cells with easily deposited functional interlayers.

11.
ACS Appl Mater Interfaces ; 11(24): 21578-21583, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31124647

RESUMEN

The tremendous success of metal-halide perovskites, especially in the field of photovoltaics, has triggered a substantial number of studies in understanding their optoelectronic properties. However, consensus regarding the electronic properties of these perovskites is lacking due to a huge scatter in the reported key parameters, such as work function (Φ) and valence band maximum (VBM) values. Here, we demonstrate that the surface photovoltage (SPV) is a key phenomenon occurring at the perovskite surfaces that feature a non-negligible density of surface states, which is more the rule than an exception for most materials under study. With ultraviolet photoelectron spectroscopy (UPS) and Kelvin probe, we evidence that even minute UV photon fluxes (500 times lower than that used in typical UPS experiments) are sufficient to induce SPV and shift the perovskite Φ and VBM by several 100 meV compared to dark. By combining UV and visible light, we establish flat band conditions (i.e., compensate the surface-state-induced surface band bending) at the surface of four important perovskites, and find that all are p-type in the bulk, despite a pronounced n-type surface character in the dark. The present findings highlight that SPV effects must be considered in all surface studies to fully understand perovskites' photophysical properties.

12.
J Phys Chem Lett ; 10(3): 601-609, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30642163

RESUMEN

Photovoltaic cells based on halide perovskites, possessing remarkably high power conversion efficiencies have been reported. To push the development of such devices further, a comprehensive and reliable understanding of their electronic properties is essential but presently not available. To provide a solid foundation for understanding the electronic properties of polycrystalline thin films, we employ single-crystal band structure data from angle-resolved photoemission measurements. For two prototypical perovskites (CH3NH3PbBr3 and CH3NH3PbI3), we reveal the band dispersion in two high-symmetry directions and identify the global valence band maxima. With these benchmark data, we construct "standard" photoemission spectra from polycrystalline thin film samples and resolve challenges discussed in the literature for determining the valence band onset with high reliability. Within the framework laid out here, the consistency of relating the energy level alignment in perovskite-based photovoltaic and optoelectronic devices with their functional parameters is substantially enhanced.

13.
Sci Rep ; 8(1): 10946, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30026501

RESUMEN

Multiple functionality of tungsten polyoxometalate (POM) has been achieved applying it as interfacial layer for solution processed high performance In2O3 thin film transistors, which results in overall improvement of device performance. This approach not only reduces off-current of the device by more than two orders of magnitude, but also leads to a threshold voltage reduction, as well as significantly enhances the mobility through facilitated charge injection from the electrode to the active layer. Such a mechanism has been elucidated through morphological and spectroscopic studies.

14.
ACS Appl Mater Interfaces ; 10(25): 21681-21687, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29856202

RESUMEN

Engineering the interface between the perovskite absorber and the charge-transporting layers has become an important method for improving the charge extraction and open-circuit voltage ( VOC) of hybrid perovskite solar cells. Conjugated polymers are particularly suited to form the hole-transporting layer, but their hydrophobicity renders it difficult to solution-process the perovskite absorber on top. Herein, oxygen plasma treatment is introduced as a simple means to change the surface energy and work function of hydrophobic polymer interlayers for use as p-contacts in perovskite solar cells. We find that upon oxygen plasma treatment, the hydrophobic surfaces of different prototypical p-type polymers became sufficiently hydrophilic to enable subsequent perovskite junction processing. In addition, the oxygen plasma treatment also increased the ionization potential of the polymer such that it became closer to the valance band energy of the perovskite. It was also found that the oxygen plasma treatment could increase the electrical conductivity of the p-type polymers, facilitating more efficient charge extraction. On the basis of this concept, inverted MAPbI3 perovskite devices with different oxygen plasma-treated polymers such as P3HT, P3OT, polyTPD, or PTAA were fabricated with power conversion efficiencies of up to 19%.

15.
ACS Appl Mater Interfaces ; 9(47): 41546-41552, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29111653

RESUMEN

Substantial variations in the electronic structure and thus possibly conflicting energetics at interfaces between hybrid perovskites and charge transport layers in solar cells have been reported by the research community. In an attempt to unravel the origin of these variations and enable reliable device design, we demonstrate that donor-like surface states stemming from reduced lead (Pb0) directly impact the energy level alignment at perovskite (CH3NH3PbI3-xClx) and molecular electron acceptor layer interfaces using photoelectron spectroscopy. When forming the interfaces, it is found that electron transfer from surface states to acceptor molecules occurs, leading to a strong decrease in the density of ionized surface states. As a consequence, for perovskite samples with low surface state density, the initial band bending at the pristine perovskite surface can be flattened upon interface formation. In contrast, for perovskites with a high surface state density, the Fermi level is strongly pinned at the conduction band edge, and only minor changes in surface band bending are observed upon acceptor deposition. Consequently, depending on the initial perovskite surface state density, very different interface energy level alignment situations (variations over 0.5 eV) are demonstrated and rationalized. Our findings help explain the rather dissimilar reported energy levels at interfaces with perovskites, refining our understanding of the operating principles in devices comprising this material.

16.
Adv Mater ; 29(28)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28547858

RESUMEN

Perovskite solar cells with all-organic transport layers exhibit efficiencies rivaling their counterparts that employ inorganic transport layers, while avoiding high-temperature processing. Herein, it is investigated how the choice of the fullerene derivative employed in the electron-transporting layer of inverted perovskite cells affects the open-circuit voltage (VOC ). It is shown that nonradiative recombination mediated by the electron-transporting layer is the limiting factor for the VOC in the cells. By inserting an ultrathin layer of an insulating polymer between the active CH3 NH3 PbI3 perovskite and the fullerene, an external radiative efficiency of up to 0.3%, a VOC as high as 1.16 V, and a power conversion efficiency of 19.4% are realized. The results show that the reduction of nonradiative recombination due to charge-blocking at the perovskite/organic interface is more important than proper level alignment in the search for ideal selective contacts toward high VOC and efficiency.

17.
Nanoscale ; 8(23): 11932-9, 2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27240641

RESUMEN

This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline ß-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become 'amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the 'amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport.

18.
ACS Appl Mater Interfaces ; 7(22): 11965-71, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25970499

RESUMEN

The electrical doping nature of a strong electron acceptor, 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN), is investigated by doping it in a typical hole-transport material, N,N'-bis(naphthalen-1-yl)-N,N'-diphenylbenzidine (NPB). A better device performance of organic light-emitting diodes (OLEDs) was achieved by doping NPB with HATCN. The improved performance could, in principle, arise from a p-type doping effect in the codeposited thin films. However, physical characteristics evaluations including UV-vis absorption, Fourier transform infrared absorption, and X-ray photoelectron spectroscopy demonstrated that there was no obvious evidence of charge transfer in the NPB:HATCN composite. The performance improvement in NPB:HATCN-based OLEDs is mainly attributed to an interfacial modification effect owing to the diffusion of HATCN small molecules. The interfacial diffusion effect of the HATCN molecules was verified by the in situ ultraviolet photoelectron spectroscopy evaluations.

20.
ACS Appl Mater Interfaces ; 5(21): 10866-73, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24107110

RESUMEN

A simple and cheap method for depositing solution-processed GeO2 (sGeO2) film is proposed utilizing the weak solubility of GeO2 in water. X-ray photoelectron spectroscopy analysis reveals that a pure GeO2 thin film can be formed by casting its aqueous solution. This method can avoid the difficulty of vacuum evaporation by its high melting point. The sGeO2 film has been used successfully as an anode interfacial layer in poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (IC60BA)-based bulk heterojunction organic solar cells with improved power conversion efficiency and device stability compared with that using conventional poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS); the improvement of the power conversion efficiency and the device stability are estimated to be 9% and 50%, respectively. The calculations of optical intensity in a whole cell demonstrate that a thin layer of sGeO2 could function as an optical spacer in the based bulk heterojunction (BHJ) organic solar cells (OSCs) for enhancing the light harvesting in the active layer. Interfacial evaluation by impedance spectroscopy shows that the sGeO2-based cell exists less charge carrier recombination and lower contact resistance. More importantly, the sGeO2 film processing is very simple and environmentally friendly, which has potential applications in green and low-cost organic electronics in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA