Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Can J Microbiol ; 66(11): 641-652, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32574514

RESUMEN

The Peruvian Andean Plateau, one of the main production areas of native varieties of Chenopodium quinoa, is exposed to abrupt decreases in environmental temperature, affecting crop production. Plant-growth-promoting rhizobacteria that tolerate low temperatures could be used as organic biofertilizers in this region. We aimed to bioprospect the native psychrotolerant bacteria of the quinoa rhizosphere in this region that show plant-growth-promoting traits. Fifty-one strains belonging to the quinoa rhizosphere were characterised; 73% of the total could grow at low temperatures (4, 6, and 15 °C), whose genetic diversity based on DNA amplification of interspersed repetitive elements (BOX) showed 12 different profiles. According to the 16S rRNA sequence, bacterial species belonging to the classes Beta- and Gammaproteobacteria were identified. Only three (6%) isolates identified as nonpathogenic bacteria exhibited plant-growth-promoting activities, like IAA production, phosphate solubilization, growth in a nitrogen-free medium, and ACC deaminase production at 6 and 15 °C. ILQ215 (Pseudomonas silesiensis) and JUQ307 (Pseudomonas plecoglossicida) strains showed significantly positive plant growth effects in aerial length (about 50%), radicular length (112% and 79%, respectively), and aerial and radicular mass (above 170% and 210%, respectively) of quinoa plants compared with the control without bacteria. These results indicate the potential of both psychrotolerant strains to be used as potential organic biofertilizers for quinoa in this region.


Asunto(s)
Chenopodium quinoa/crecimiento & desarrollo , Chenopodium quinoa/microbiología , Proteobacteria/aislamiento & purificación , Microbiología del Suelo , Liasas de Carbono-Carbono/metabolismo , Frío , Fijación del Nitrógeno , Perú , Fosfatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/metabolismo , ARN Ribosómico 16S/genética , Rizosfera
2.
World J Microbiol Biotechnol ; 33(11): 203, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29079927

RESUMEN

Bacteria isolated from soil and rhizosphere samples collected in Peru from Andean crops were tested in vitro and in vivo to determine their potential as plant growth promoters and their ability to induce systemic resistance to Alternaria alternata in tomato plants. The isolates were identified by sequencing their 16S ribosomal RNA gene. Test for phosphate solubilization, and indolacetic acid were also carried out, together with in vitro antagonism assays in dual cultures towards the plant pathogens Fusarium solani, A. alternata and Curvularia lunata. The three most promising isolates (Pa15, Ps155, Ps168) belonged to the genus Pseudomonas. Further assays were carried out with tomato plants to assess their plant protection effect towards A. alternata and as growth promoters. Inoculation of tomato seeds with all isolates significantly enhanced seed germination, plantlets emergence and plant development. Bacterial inoculation also reduce damage level caused by A. alternata. The expression levels of three tomato genes involved in the jasmonate (AOS), ethylene responsive (ERF-2) and pathogenesis related (PR-P2) pathways were determined in plants challenged with A. alternata, alone or with each bacterial isolate, respectively. Results showed that at 24 h after infection, in absence of the pathogen, the expression level of the tested genes was very low. The presence of A. alternata alone and in combination with bacteria increased the transcripts of all genes. Data showed a potential of best performing isolate Ps168 to sustain tomato plants nutrition and activate defense-related genes for protection by pathogenic fungi.


Asunto(s)
Pseudomonas/crecimiento & desarrollo , Pseudomonas/aislamiento & purificación , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Germinación , Solanum lycopersicum/genética , Perú , Desarrollo de la Planta , Enfermedades de las Plantas/prevención & control , Pseudomonas/clasificación , Pseudomonas/genética , Rizosfera , Microbiología del Suelo
3.
Int J Syst Evol Microbiol ; 64(Pt 6): 2072-2078, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24664579

RESUMEN

A group of strains isolated from root nodules of Phaseolus lunatus (Lima bean) in Peru were characterized by genotypic, genomic and phenotypic methods. All strains possessed identical 16S rRNA gene sequences that were 99.9% identical to that of Bradyrhizobium lablabi CCBAU 23086(T). Despite having identical 16S rRNA gene sequences, the Phaseolus lunatus strains could be divided into two clades by sequence analysis of recA, atpD, glnII, dnaK and gyrB genes. The genome sequence of a representative of each clade was obtained and compared to the genomes of closely related species of the genus Bradyrhizobium. Average nucleotide identity values below the species circumscription threshold were obtained when comparing the two clades to each other (88.6%) and with all type strains of the genus Bradyrhizobium (≤92.9%). Phenotypes distinguishing both clades from all described and closely related species of the genus Bradyrhizobium were found. On the basis of the results obtained, two novel species, Bradyrhizobium paxllaeri sp. nov. (type strain LMTR 21(T) = DSM 18454(T) = HAMBI 2911(T)) and Bradyrhizobium icense sp. nov. (type strain LMTR 13(T) = HAMBI 3584(T) = CECT 8509(T) = CNPSo 2583(T)), are proposed to accommodate the uncovered clades of Phaseolus lunatus bradyrhizobia. These species share highly related but distinct nifH and nodC symbiosis genes.


Asunto(s)
Bradyrhizobium/clasificación , Phaseolus/microbiología , Filogenia , Nódulos de las Raíces de las Plantas/metabolismo , Técnicas de Tipificación Bacteriana , Composición de Base , Bradyrhizobium/genética , Bradyrhizobium/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Datos de Secuencia Molecular , Fijación del Nitrógeno , Hibridación de Ácido Nucleico , Perú , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Simbiosis
4.
Microorganisms ; 12(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38674665

RESUMEN

Avocado is one of the most in-demand fruits worldwide and the trend towards its sustainable production, regulated by international standards, is increasing. One of the most economically important diseases is root rot, caused by Phythopthora cinnamomi. Regarding this problem, antagonistic microorganism use is an interesting alternative due to their phytopathogen control efficiency. Therefore, the interaction of arbuscular mycorrhizal fungi of the phylum Glomeromycota, native to the Peruvian coast (GWI) and jungle (GFI), and avocado rhizospheric bacteria, Bacillus subtilis and Pseudomonas putida, was evaluated in terms of their biocontrol capacity against P. cinnamomi in the "Zutano" variety of avocado plants. The results showed that the GWI and Bacillus subtilis combination increased the root exploration surface by 466.36%. P. putida increased aerial biomass by 360.44% and B. subtilis increased root biomass by 433.85%. Likewise, P. putida rhizobacteria showed the highest nitrogen (24.60 mg ∙ g-1 DM) and sulfur (2.60 mg ∙ g-1 DM) concentrations at a foliar level. The combination of GWI and Bacillus subtilis was the treatment that presented the highest calcium (16.00 mg ∙ g-1 DM) and magnesium (8.80 mg ∙ g-1 DM) concentrations. The microorganisms' multifunctionality reduced disease severity by 85 to 90% due to the interaction between mycorrhizae and rhizobacteria. In conclusion, the use of growth promoting microorganisms that are antagonistic to P. cinnamomi represents a potential strategy for sustainable management of avocado cultivation.

5.
Microorganisms ; 12(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38543633

RESUMEN

Peru is one of the leading countries that produce and export specialty coffees, favorably positioned in the international markets for its physical and organoleptic cup qualities. In recent years, yellow coffee rust caused by the phytopathogenic fungus Hemileia vastatrix stands out as one of the main phytosanitary diseases that affect coffee culture yields. Many studies have demonstrated bacteria antagonistic activity against a number of phytopathogen fungi. In this context, the aim of this work was to select and characterize phyllospheric bacteria isolated from Coffea arabica with antagonistic features against coffee rust to obtain biocontrollers. For that purpose, a total of 82 phyllospheric bacteria were isolated from two coffee leaf rust-susceptible varieties, typica and caturra roja, and one tolerant variety, catimor. Of all the isolates, 15% were endophytic and 85% were epiphytes. Among all the isolates, 14 were capable of inhibiting the mycelial radial growth of Mycena citricolor, and Colletotrichum sp. 16S rRNA gene sequence-based analysis showed that 9 isolates were related to Achromobacter insuavis, 2 were related to Luteibacter anthropi and 1 was related to Rodococcus ceridiohylli, Achromobacter marplatensis and Pseudomonas parafulva. A total of 7 representative bacteria of each group were selected based on their antagonistic activity and tested in germination inhibition assays of coffee rust uredinospores. The CRRFLT7 and TRFLT8 isolates showed a high inhibition percentage of urediniospores germination (81% and 82%, respectively), similar to that obtained with the chemical control (91%). An experimental field assay showed a good performance of both strains against rust damage too, making them a promising alternative for coffee leaf rust biocontrol.

6.
J Fungi (Basel) ; 9(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36836347

RESUMEN

In Peru, almost 50% of the national agricultural products come from the coast, highlighting the production of avocado. Much of this area has saline soils. Beneficial microorganisms can favorably contribute to mitigating the effect of salinity on crops. Two trials were carried out with var. Zutano to evaluate the role of native rhizobacteria and two Glomeromycota fungi, one from a fallow (GFI) and the other from a saline soil (GWI), in mitigating salinity in avocado: (i) the effect of plant growth promoting rhizobacteria, and (ii) the effect of inoculation with mycorrhizal fungi on salt stress tolerance. Rhizobacteria P. plecoglissicida, and B. subtilis contributed to decrease the accumulation of chlorine, potassium and sodium in roots, compared to the uninoculated control, while contributing to the accumulation of potassium in the leaves. Mycorrhizae increased the accumulation of sodium, potassium, and chlorine ions in the leaves at a low saline level. GWI decreased the accumulation of sodium in the leaves compared to the control (1.5 g NaCl without mycorrhizae) and was more efficient than GFI in increasing the accumulation of potassium in leaves and reducing chlorine root accumulation. The beneficial microorganisms tested are promising in the mitigation of salt stress in avocado.

7.
Microorganisms ; 11(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375098

RESUMEN

Rahnella aquatilis AZO16M2, was characterized for its phosphate solubilization capacity to improve the establishment and survival of Musa acuminata var. Valery seedlings under ex-acclimation. Three phosphorus sources (Rock Phosphate (RF), Ca3(PO4)2 and K2HPO4) and two types of substrate (sand:vermiculite (1:1) and Premix N°8) were selected. The factorial analysis of variance (p < 0.05) showed that R. aquatilis AZO16M2 (OQ256130) solubilizes Ca3(PO4)2 in solid medium, with a Solubilization Index (SI) of 3.77 at 28 °C (pH 6.8). In liquid medium, it was observed that R. aquatilis produced 29.6 mg/L soluble P (pH 4.4), and synthesized organic acids (oxalic, D-gluconic, 2-ketogluconic and malic), Indole Acetic Acid (IAA) (33.90 ppm) and siderophores (+). Additionally, acid and alkaline phosphatases (2.59 and 2.56 µg pNP/mL/min) were detected. The presence of the pyrroloquinoline-quinone (PQQ) cofactor gene was confirmed. After inoculating AZO16M2 to M. acuminata in sand:vermiculite with RF, the chlorophyll content was 42.38 SPAD (Soil Plant Analysis Development). Aerial fresh weight (AFW), aerial dry weight (ADW) and root dry weight (RDW) were superior to the control by 64.15%, 60.53% and 43.48%, respectively. In Premix N°8 with RF and R. aquatilis, 8.91% longer roots were obtained, with 35.58% and 18.76% more AFW and RFW compared with the control as well as 94.45 SPAD. With Ca3(PO4)2, values exceeded the control by 14.15% RFW, with 45.45 SPAD. Rahnella aquatilis AZO16M2 favored the ex-climatization of M. acuminata through improving seedling establishment and survival.

8.
Microorganisms ; 10(4)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35456872

RESUMEN

Soils in the high jungle region of Peru continuously face erosion due to heavy rain, which leads to significant nutrient losses. Leguminous plants may provide a sustainable solution to this problem due to their ability to fix atmospheric nitrogen with the help of symbiotic rhizospheric microbes that reside in their root nodules and help restore soil fertility. The aim of this study was to isolate native rhizobial strains that can form functional nodules in red kidney beans to help improve their growth, development, and yield in field conditions. Rhizobium strains were isolated from soil samples collected from coffee fields using bean plants as trap hosts. The strain RZC12 was selected because it showed good root nodule promotion and a number of PGPR (plant-growth-promoting rhizobacteria) attributes. In the field, bean plants inoculated with the strain RZC12 and co-cultivated with coffee plants produced approximately 21 nodules per plant, whereas control plants produced an average of 1 nodule each. The inoculation with RZC12 significantly increased plant length (72.7%), number of leaves (58.8%), fresh shoot weight (85.5%), dry shoot weight (78%), fresh root weight (85.7%), and dry root weight (82.5%), compared with the control. The dry pod weight produced by the plants inoculated with RZC12 was 3.8 g, whereas the control plants produced 2.36 g of pods. In conclusion, RZC12 is a promising strain that can be used in field conditions to improve the overall productivity of red kidney beans.

9.
Microbiol Resour Announc ; 11(11): e0085722, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36314916

RESUMEN

Several species of the genus Bacillus are used as plant growth-promoting bacteria. In particular, species of the subtilis group are known as good antagonists of phytopathogenic fungi. Here, we report the draft genome sequence of a rhizospheric Bacillus strain with promising abilities as a biocontrol agent.

10.
Braz J Microbiol ; 51(2): 527-529, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31667798

RESUMEN

The complete symbiosis island (SI) of Bradyrhizobium paxllaeri LMTR 21T, a mutualistic symbiont of the legume Phaseolus lunatus, was identified and analyzed. The SI was 646 kb in size, had lower G+C content than the genome average, and encoded not only nodulation and nitrogen fixation functions but also those for hydrogen uptake, vitamin and phytohormone biosynthesis, molybdenum transport, nonribosomal peptide synthesis, and type III secretion. Additionally, two divergent nodA genes were encoded in the SI.


Asunto(s)
Bradyrhizobium/genética , Genoma Bacteriano , Islas Genómicas , Composición de Base , Bradyrhizobium/fisiología , ADN Bacteriano/genética , Redes y Vías Metabólicas/genética , Fijación del Nitrógeno/genética , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Análisis de Secuencia de ADN
11.
Syst Appl Microbiol ; 43(5): 126106, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32847781

RESUMEN

Human life became largely dependent on agricultural products after distinct crop-domestication events occurred around 10,000 years ago in different geographical sites. Domestication selected suitable plants for human agricultural practices with unexpected consequences on plant microbiota, which has notable effects on plant growth and health. Among other traits, domestication has changed root architecture, exudation, or defense responses that could have modified plant microbiota. Here we present the comparison of reported data on the microbiota from widely consumed cereals and legumes and their ancestors showing that different bacteria were found in domesticated and wild plant microbiomes in some cases. Considering the large variability in plant microbiota, adequate sampling efforts and function-based approaches are needed to further support differences between the microbiota from wild and domesticated plants. The study of wild plant microbiomes could provide a valuable resource of unexploited beneficial bacteria for crops.


Asunto(s)
Productos Agrícolas/microbiología , Domesticación , Grano Comestible/microbiología , Fabaceae/microbiología , Microbiota
12.
Genome Announc ; 6(21)2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29798911

RESUMEN

The genome sequence of Rhizobium sophoriradicis H4, a nitrogen-fixing bacterium isolated from the common bean (Phaseolus vulgaris) in Peru, is reported here. The genome assembly revealed a 6.44-Mbp genome which was distributed into 95 contigs, with N50 and L50 values of 293 kbp and 9, respectively. The genome contained 6,312 coding sequence (CDS) genes and 52 RNA genes (49 tRNAs and 3 rRNAs).

13.
Genome Announc ; 6(10)2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29519840

RESUMEN

The complete genome sequence of Bradyrhizobium icense LMTR 13T, a root nodule bacterium isolated from the legume Phaseolus lunatus, is reported here. The genome consists of a circular 8,322,773-bp chromosome which codes for a large and novel symbiotic island as well as genes putatively involved in soil and root colonization.

14.
AIMS Microbiol ; 3(2): 279-292, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31294161

RESUMEN

The high Andean plateau of Peru is known to suffer harsh environmental conditions. Acidic soils containing high amount of heavy metals due to mining activities and withstanding very low temperatures affect agricultural activities by diminishing crop quality and yield. In this context, plant growth promoting rhizobacteria (PGPR) adapted to low temperatures and tolerant to heavy metals can be considered as an environment-friendly biological alternative for andean crop management. The aim of this work was to select and characterize psychrotrophic PGPR isolated from the rhizosphere of maca (Lepidium meyenii Walp.) a traditional andean food crop. A total of 44 psychrotrophic strains isolated from 3 areas located in the Bombon plateu of Junin-Peru were tested for their PGPR characteristics like indole acetic acid (IAA) production, phosphate solubilization and for their ability to improve seed germination. In addition, their capacity to grow in the presence of heavy metals like cadmium (Cd), lead (Pb), cobalt (Co) and mercury (Hg) was tested. Of the total number of strains tested, 12 were positive for IAA production at 22 °C, 8 at 12 °C and 16 at 6 °C. Phosphate solubilization activities were higher at 12 °C and 6 °C than at 22 °C. Red clover plant assays showed that 16 strains were capable to improve seed germination at 22 °C and 4 at 12 °C. Moreover, 11 strains showed tolerance to Cd and Pb at varying concentrations. This study highlight the importance of obtaining PGPRs to be used in high andean plateu crops that are exposed to low temperatures and presence of heavy metals on soil.

15.
Genom Data ; 13: 35-37, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28702356

RESUMEN

Bradyrhizobium sp. LMTR 3 is a representative strain of one of the geno(species) of diazotrophic symbionts associated with Lima bean (Phaseolus lunatus) in Peru. Its 7.83 Mb genome was sequenced using the Illumina technology and found to encode a complete set of genes required for nodulation and nitrogen fixation, and additional genes putatively involved in root colonization. Its draft genome sequence and annotation have been deposited at GenBank under the accession number MAXC00000000.

16.
Genom Data ; 13: 38-40, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28721334

RESUMEN

Bradyrhizobium paxllaeri is a prevalent species in root nodules of the Lima bean (Phaseolus lunatus) in Peru. LMTR 21T is the type strain of the species and was isolated from a root nodule collected in an agricultural field in the Peruvian central coast. Its 8.29 Mbp genome encoded 7635 CDS, 71 tRNAs and 3 rRNAs genes. All genes required to stablish a nitrogen-fixing symbiosis with its host were present. The draft genome sequence and annotation have been deposited at GenBank under the accession number MAXB00000000.

17.
Syst Appl Microbiol ; 29(3): 253-62, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16564961

RESUMEN

The diversity of a collection of 21 bradyrhizobial isolates from Lima bean (Phaseolus lunatus L.) was assayed by molecular methods. Moderately high to high genetic diversity was revealed by multilocus enzyme electrophoresis (MLEE) analysis of seven enzyme loci and genomic fingerprints with ERIC and BOX primers. Two groups with differences in growth rate were found among the isolates and their differentiation as two divergent bradyrhizobial lineages was supported by PCR-RFLP of the rpoB gene and sequence analysis of the 16S rDNA and dnaK genes. Isolates with slow growth (SG) were identified as Bradyrhizobium yuanmingense, while extra-slow growing isolates (ESG) constitute a new lineage different from all described Bradyrhizobium species. Three distinct symbiotic genotypes were detected among Lima bean bradyrhizobia by PCR-RFLP and sequence analysis of the nifH and nodB genes. One genotype was found in the ESG lineage and two in B. yuanmingense. Another symbiotic genotype was detected in B. yuamingense isolated from Lespedeza plants. The identified bradyrhizobial lineages constitute sympatric species effectively nodulating Lima bean on the coast of Peru.


Asunto(s)
Bradyrhizobium/genética , Phaseolus/microbiología , Bradyrhizobium/aislamiento & purificación , Bradyrhizobium/metabolismo , ADN Ribosómico/química , ARN Polimerasas Dirigidas por ADN/genética , Proteínas HSP70 de Choque Térmico/genética , Perú , Filogenia , Simbiosis
18.
Rev. peru. biol. (Impr.) ; 27(1): 21-25, ene.-mar 2020.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1144926

RESUMEN

Abstract High world population and the increase in global food demands results in an indiscriminate use of chemical fertilizers by farmers, causing soil deterioration and other environmental problems. In recent years there has been a collective concern to preserve the environment through sustainable and environmentally friendly techniques. Plant growth-promoting bacteria (PGPB) are widely known to benefit plants in a sustainable manner, reducing chemical fertilizers application. Many studies have shown that these bacteria not only improve crop yields but also its quality, increasing certain nutrients and molecules that are important for human health such as aminoacids, proteins, vitamins, flavonoids, antioxidants, essential oils, among others. This work compiles recent information of PGPB as an alternative of chemical fertilizer for improving crop yields and plant metabolites production.


El incremento acelerado de la población mundial que conlleva al aumento en la demanda de alimentos; ha ocasionado el uso indiscriminado de fertilizantes químicos por parte de los agricultores, provocando así el deterioro del suelo y con ello los subsecuentes problemas ambientales. En los últimos años ha surgido la preocupación colectiva de preservar el medioambiente a través del uso de técnicas sostenibles y ambientalmente amigables. Las bacterias promotoras de crecimiento vegetal (PGPB) son ampliamente conocidas por incrementar el crecimiento y desarrollo de las plantas de manera sostenible permitiendo así la reducción de la aplicación de fertilizantes químicos. Muchos estudios han demostrado que estas bacterias no solo mejoran el rendimiento de los cultivos sino también la calidad de estos, aumentando ciertos nutrientes y moléculas que son importantes para la salud del ser humano que los consume como aminoácidos, proteínas, vitaminas, flavonoides, antioxidantes, aceites esenciales, entre otros. Este trabajo recopila información reciente de las PGPB como alternativa a los fertilizantes químicos para la mejora en el rendimiento de los cultivos y la producción de metabolitos en las plantas.

19.
Rev. peru. biol. (Impr.) ; 27(1): 35-42, ene.-mar 2020. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1144928

RESUMEN

Abstract The "tarwi" or "chocho" (Lupinus mutabilis Sweet) is the unique specie of the genus Lupinus cultivated in America, appreciated for its high protein content in seeds, and the ability to fix nitrogen in symbiotic association with rhizobia. Its genetic variability is reinforced by approximately 84 wild species in Peru. The present investigation was carried out to show if the rhizobia of a wild lupino (Lupinus sp.) might be able to nodulate and promote the growth of tarwi. The root nodules were collected from an abandoned crop field of Huaraz (Ancash-Peru) at 3497 m of altitude, were isolated 8 slow-growing (6-7 days) rhizobial strains, which due to their microbiological and molecular characteristics correspond to the genus Bradyrhizobium. These strains were inoculated in tarwi seeds, and co-inoculated to the 15-day seedlings. It was applied a completely randomized design with 11 treatments (including the control strain LMRT28, N+ with nitrogen fertilization and N- without fertilization) and 5 repetitions. After 70 days of growth in greenhouse conditions, all treatments with native strains, with the exception of LSHZ-L1 and LSHZ-L2, showed reddish-colored root nodules, indicator of leghemoglobin activity. Six of the strains significantly increased the aerial length of the plants respect to the N- and the LMRT28 treatment; also, there were significant differences in relation of aerial dry weight being better in five treatments with native strains. The major foliar coverage was developed by LSHZ-L7; and the greatest number of secondary nodules was showed in LSHZ-L3, which is correlated with the dry weight of the root.


Resumen El "tarwi" o "chocho" (Lupinus mutabilis Sweet) es la única especie cultivada del género Lupinus en América, valorado por su alto contenido proteico y capacidad de fijar nitrógeno en asociación simbiótica con rizobios. Su variabilidad genética está reforzada por aproximadamente 84 especies silvestres en el Perú. La presente investigación se realizó para evidenciar si los rizobios de una especie silvestre de lupino (Lupinus sp.) fueran capaces de nodular y promover el crecimiento del tarwi. Los nódulos radiculares fueron colectados de un campo de cultivo en abandono de Huaraz (Ancash-Perú) a 3497 m de altitud; se aislaron 8 cepas rizobianas de crecimiento lento (6-7 días) que por sus características microbiológicas y moleculares corresponden al género Bradyrhizobium. Estas fueron inoculadas en semillas de tarwi y reinoculadas a plántulas de 15 días. Se aplicó diseño completamente aleatorizado con 11 tratamientos (incluyendo la cepa control LMRT28, N+ con fertilización nitrogenada, y N- sin fertilización) y 5 repeticiones. Después de 70 días en invernadero se observó que todas las cepas nativas, a excepción de LSHZ-L1 y LSHZ-L2, mostraron nódulos radiculares de coloración rojiza indicador de la actividad de la leghemoglobina. Seis de las cepas incrementaron significativamente la longitud aérea de las plantas respecto al N- y al control LMRT28; también hubo diferencias significativas en cuanto al peso seco aéreo destacando cinco cepas nativas; la mayor cobertura foliar fue desarrollada por LSHZ-L7; y la cepa LSHZ-L3 presentó significativamente mayor número de nódulos secundarios y estuvo correlacionada con el peso seco de la raíz.

20.
Rev. peru. biol. (Impr.) ; 25(2): 161-168, Apr.-Jun. 2018. ilus, tab
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1094314

RESUMEN

Se produjo biomasa de Pseudomonas sp. LMTK32 a partir de la modificación del medio de cultivo Caldo Extracto de Levadura Manitol (LMC) con el objetivo de incrementar el número de células viables con capacidad de promover la germinación de semillas de maca peletizadas y reducir los costos de producción. En el proceso de optimización, los componentes extracto de levadura y manitol del medio de cultivo LMC fueron reemplazados por fuentes comerciales de sacarosa y glutamato, cuyas concentraciones fueron determinadas en matraces mediante el diseño estadístico de Box-Behnken; además, se determinó el efecto del porcentaje de inóculo en el tiempo de producción de biomasa. Posteriormente se determinó a nivel de biorreactor que 28.57 h-1 fue el valor adecuado del coeficiente volumétrico de transferencia de oxigeno (kLa) a 600 rpm, produciendo 1.28x1011 UFC/mL. En el medio modificado M1, empleando 12.06 g/L-1 de sacarosa, 11.50 g/L-1 de glutamato de sodio y 10.9% de inoculante se obtuvo 15x108 UFC/mL, superando en 52% más el número de células viables con respecto al tratamiento control LMC (7.8x108 UFC/mL). A nivel in vitro, la peletización de semillas de maca con Pseudomonas sp. LMTK32 producidas en biorreactor y en el medio modificado M1 favoreció su germinación. A partir de sustratos orgánicos comerciales se puede producir inoculantes bacterianos eficientes en el desarrollo de cultivos de maca, sin alterar su capacidad de promover el crecimiento vegetal


Biomass of Pseudomonas sp. LMTK32 was produced from modification of culture media Yeast Extract Mannitol Broth (YEMB) with the aim of increasing the number of viable cells with the ability to promote the germination of maca seeds pelleted with the bacteria and reduce production costs. In the optimization process, the yeast extract and mannitol components of the LMC culture media were replaced by commercial sources of sucrose and glutamate, whose concentrations were determined in flasks by statistical design from Box-Behnken; in addition, the effect of the inoculum percentage on the time of biomass production was determined. Subsequently, it was determined at the bioreactor level that 28.57 h-1 was the adequate value of the volumetric oxygen transfer coefficient (kLa) at 600 rpm, producing 1.28 x 10 11 CFU / mL. In the LMC M1 modified media, using 12.06 g / L-1 of sucrose, 11.50 g / L-1 of sodium glutamate and 10.9% of inoculant obtained 15x108 CFU / mL, increasing in 48% the number of viable cells with respect to the YEMB control treatment (7.8x10 8 CFU / mL). At the in vitro level, the pelleting of maca seeds with Pseudomonas sp. LMTK32 produced in bioreactor and in the modified media M1 favored its germination. From commercial organic substrates, efficient bacterial inoculants can be produced in the development of maca crops, without altering their ability to promote plant growth

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA