Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neurocrit Care ; 41(1): 59-69, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38114796

RESUMEN

BACKGROUND: We conducted a preliminary phase I, dose-escalating, safety, and tolerability trial in the population of patients with acute intracerebral hemorrhage (ICH) by using human allogeneic bone marrow-derived mesenchymal stem/stromal cells. METHODS: Eligibility criteria included nontraumatic supratentorial hematoma less than 60 mL and Glasgow Coma Scale score greater than 5. All patients were monitored in the neurosciences intensive care unit for safety and tolerability of mesenchymal stem/stromal cell infusion and adverse events. We also explored the use of cytokines as biomarkers to assess responsiveness to the cell therapy. We screened 140 patients, enrolling 9 who met eligibility criteria into three dose groups: 0.5 million cells/kg, 1 million cells/kg, and 2 million cells/kg. RESULTS: Intravenous administration of allogeneic bone marrow-derived mesenchymal stem/stromal cells to treat patients with acute ICH is feasible and safe. CONCLUSIONS: Future larger randomized, placebo-controlled ICH studies are necessary to validate this study and establish the effectiveness of this therapeutic approach in the treatment of patients with ICH.


Asunto(s)
Hemorragia Cerebral , Trasplante de Células Madre Mesenquimatosas , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Hemorragia Cerebral/terapia , Masculino , Persona de Mediana Edad , Femenino , Anciano , Adulto
2.
NPJ Microgravity ; 10(1): 88, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39168992

RESUMEN

Stem cell research performed in space has provided fundamental insights into stem cell properties and behavior in microgravity including cell proliferation, differentiation, and regeneration capabilities. However, there is broader scientific value to this research including potential translation of stem cell research in space to clinical applications. Here, we present important discoveries from different studies performed in space demonstrating the potential use of human stem cells as well as the limitations in cellular therapeutics. A full understanding of the effects of microgravity in space on potentially supporting the expansion and/or enhancement of stem cell function is required to translate the findings into clinics.

3.
Craniomaxillofac Trauma Reconstr ; 17(1): 61-73, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38371215

RESUMEN

Study Design: Human bone marrow stem cells (hBMSCs) and human adipose-derived stem cells (hADSCs) have demonstrated the capability to regenerate bone once they have differentiated into osteoblasts. Objective: This systematic review aimed to evaluate the in vitro osteogenic differentiation potential of these cells when seeded in a poly (lactic-co-glycolic) acid (PLGA) scaffold. Methods: A literature search of 4 databases following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted in January 2021 for studies evaluating the osteogenic differentiation potential of hBMSCs and hADSCs seeded in a PLGA scaffold. Only in vitro models were included. Studies in languages other than English were excluded. Results: A total of 257 studies were identified after the removal of duplicates. Seven articles fulfilled our inclusion and exclusion criteria. Four of these reviews used hADSCs and three used hBMSCs in the scaffold. Upregulation in osteogenic gene expression was seen in all the cells seeded in a 3-dimensional scaffold compared with 2-dimensional films. High angiogenic gene expression was found in hADSCs. Addition of inorganic material to the scaffold material affected cell performance. Conclusions: Viability, proliferation, and differentiation of cells strongly depend on the environment where they grow. There are several factors that can enhance the differentiation capacity of stem cells. A PLGA scaffold proved to be a biocompatible material capable of boosting the osteogenic differentiation potential and mineralization capacity in hBMSCs and hADSCs.

4.
Stem Cell Res Ther ; 15(1): 230, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075600

RESUMEN

BACKGROUND: Radiation therapy is the standard of care for central nervous system tumours. Despite the success of radiation therapy in reducing tumour mass, irradiation (IR)-induced vasculopathies and neuroinflammation contribute to late-delayed complications, neurodegeneration, and premature ageing in long-term cancer survivors. Mesenchymal stromal cells (MSCs) are adult stem cells that facilitate tissue integrity, homeostasis, and repair. Here, we investigated the potential of the iPSC-derived MSC (iMSC) secretome in immunomodulation and vasculature repair in response to radiation injury utilizing human cell lines. METHODS: We generated iPSC-derived iMSC lines and evaluated the potential of their conditioned media (iMSC CM) to treat IR-induced injuries in human monocytes (THP1) and brain vascular endothelial cells (hCMEC/D3). We further assessed factors in the iMSC secretome, their modulation, and the molecular pathways they elicit. RESULTS: Increasing doses of IR disturbed endothelial tube and spheroid formation in hCMEC/D3. When IR-injured hCMEC/D3 (IR ≤ 5 Gy) were treated with iMSC CM, endothelial cell viability, adherence, spheroid compactness, and proangiogenic sprout formation were significantly ameliorated, and IR-induced ROS levels were reduced. iMSC CM augmented tube formation in cocultures of hCMEC/D3 and iMSCs. Consistently, iMSC CM facilitated angiogenesis in a zebrafish model in vivo. Furthermore, iMSC CM suppressed IR-induced NFκB activation, TNF-α release, and ROS production in THP1 cells. Additionally, iMSC CM diminished NF-kB activation in THP1 cells cocultured with irradiated hCMEC/D3, iMSCs, or HMC3 microglial lines. The cytokine array revealed that iMSC CM contains the proangiogenic and immunosuppressive factors MCP1/CCL2, IL6, IL8/CXCL8, ANG (Angiogenin), GROα/CXCL1, and RANTES/CCL5. Common promoter regulatory elements were enriched in TF-binding motifs such as androgen receptor (ANDR) and GATA2. hCMEC/D3 phosphokinome profiling revealed increased expression of pro-survival factors, the PI3K/AKT/mTOR modulator PRAS40 and ß-catenin in response to CM. The transcriptome analysis revealed increased expression of GATA2 in iMSCs and the enrichment of pathways involved in RNA metabolism, translation, mitochondrial respiration, DNA damage repair, and neurodevelopment. CONCLUSIONS: The iMSC secretome is a comodulated composite of proangiogenic and immunosuppressive factors that has the potential to alleviate radiation-induced vascular endothelial cell damage and immune activation.


Asunto(s)
Células Endoteliales , Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Endoteliales/metabolismo , Células Endoteliales/efectos de la radiación , Secretoma/metabolismo , Animales , Pez Cebra , Medios de Cultivo Condicionados/farmacología , Neovascularización Fisiológica/efectos de la radiación
5.
J Clin Med ; 12(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38137625

RESUMEN

BACKGROUND: Despite numerous measures used to prevent pressure ulcers, their growing prevalence in recent years is expected to continue as the population ages. This review aims to report the outcomes of the regenerative potential of MSCs in treating pressure ulcers, assessing the effectiveness of MSCs in treating pressure ulcers. METHODS: A computerized search for articles on animal models that use MSCs as primary therapy to treat pressure ulcers, published from conception to present, was conducted using PubMed, MEDLINE, Embase, and CINAHL. Our search yielded 52 articles, narrowed to 44 after excluding duplicates. RESULTS: Out of 52 articles collected from four databases, 11 met the inclusion criteria. A total of 11 articles published between 2008 and 2020 met the inclusion criteria. Eight studies were observational descriptive papers in animal models, and three were prospective. Six studies used autologous MSCs, while five used allogenic MSCs. Three studies were conducted in humans, and the remaining eight were conducted in animals. The most common method of cell delivery was an intradermal injection in the margins of the ulcer. All studies reported positive results, including improved wound healing, reduced inflammation, and improved tissue regeneration. CONCLUSIONS: MSCs have shown promising results in treating pressure ulcers in animal and clinical trials. The combination of MSCs and scaffold materials has also been studied and found to be effective in wound healing. A standardized human wound model has been proposed further to investigate the efficacy of cell-based therapies for chronic wounds. However, more research is needed to determine the best quantity of cells to apply for pressure ulcers and to ensure the safety and efficacy of these treatments in clinical settings.

6.
Neurosurg Pract ; 4(4)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38464470

RESUMEN

Background and Objectives: Despite standard of care with maximal safe resection and chemoradiation, glioblastoma is the most common and aggressive type of primary brain cancer. Surgical resection provides a window of opportunity to locally treat gliomas while the patient is recovering, and before initiating concomitant chemoradiation. To assess the safety and establish the maximum tolerated dose of adipose-derived mesenchymal stem cells (AMSCs) for the treatment of recurrent glioblastoma (GBM). Secondary objectives are to assess the toxicity profile and long-term survival outcomes of patients enrolled in the trial. Additionally, biospecimens will be collected to explore the local and systemic responses to this therapy. Methods: We will conduct a phase 1, dose escalated, non-randomized, open label, clinical trial of GBM patients who are undergoing surgical resection for recurrence. Up to 18 patients will receive intra-cavitary application of AMSCs encapsulated in fibrin glue during surgical resection. All patients will be followed for up to 5 years for safety and survival data. Adverse events will be recorded using the CTCAE V5.0. Expected Outcomes: This study will explore the maximum tolerated dose (MTD) of AMSCs along with the toxicity profile of this therapy in patients with recurrent GBM. Additionally, preliminary long-term survival and progression-free survival outcome analysis will be used to power further randomized studies. Lastly, CSF and blood will be obtained throughout the treatment period to investigate circulating molecular and inflammatory tumoral/stem cell markers and explore the mechanism of action of the therapeutic intervention. Discussion: This prospective translational study will determine the initial safety and toxicity profile of local delivery of AMSCs for recurrent GBM. It will also provide additional survival metrics for future randomized trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA