Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochim Biophys Acta Proteins Proteom ; 1865(12): 1758-1769, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28890404

RESUMEN

Carbohydrate-Active Enzymes are key enzymes for biomass-to-bioproducts conversion. α-l-Arabinofuranosidases that belong to the Glycoside Hydrolase family 62 (GH62) have important applications in biofuel production from plant biomass by hydrolyzing arabinoxylans, found in both the primary and secondary cell walls of plants. In this work, we identified a GH62 α-l-arabinofuranosidase (AnAbf62Awt) that was highly secreted when Aspergillus nidulans was cultivated on sugarcane bagasse. The gene AN7908 was cloned and transformed in A. nidulans for homologous production of AnAbf62Awt, and we confirmed that the enzyme is N-glycosylated at asparagine 83 by mass spectrometry analysis. The enzyme was also expressed in Escherichia coli and the studies of circular dichroism showed that the melting temperature and structural profile of AnAbf62Awt and the non-glycosylated enzyme from E. coli (AnAbf62Adeglyc) were highly similar. In addition, the designed glycomutant AnAbf62AN83Q presented similar patterns of secretion and activity to the AnAbf62Awt, indicating that the N-glycan does not influence the properties of this enzyme. The crystallographic structure of AnAbf62Adeglyc was obtained and the 1.7Å resolution model showed a five-bladed ß-propeller fold, which is conserved in family GH62. Mutants AnAbf62AY312F and AnAbf62AY312S showed that Y312 was an important substrate-binding residue. Molecular dynamics simulations indicated that the loop containing Y312 could access different conformations separated by moderately low energy barriers. One of these conformations, comprising a local minimum, is responsible for placing Y312 in the vicinity of the arabinose glycosidic bond, and thus, may be important for catalytic efficiency.


Asunto(s)
Aspergillus nidulans/enzimología , Celulosa/farmacología , Glicósido Hidrolasas/química , Aspergillus nidulans/crecimiento & desarrollo , Cristalografía , Glicósido Hidrolasas/fisiología , Glicosilación , Simulación de Dinámica Molecular
2.
J Basic Microbiol ; 54(12): 1358-66, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25080195

RESUMEN

The interaction between fungi and plants that form ectomycorrhizae (ECM) promotes alterations in the gene expression profiles of both organisms. Fungal genes expression related to metabolism were evaluated at the pre-symbiotic stage and during the ECM development between Scleroderma laeve and Eucalyptus grandis. Partial sequences of ATP synthase (atp6), translation elongation factor (ef1α), the RAS protein (ras), and the 17S rDNA genes were isolated. The expression of the atp6 and 17S rDNA genes during the pre-symbiotic stage showed an approximately threefold increase compared to the control. During ECM development, the expression of the 17S rDNA gene showed a 4.4-fold increase after 3 days of contact, while the expression of the atp6 gene increased 7.23-fold by the 15th day, suggesting that protein synthesis and respiratory chain activities are increased during the formation of the mantle and the Hartig net. The ras gene transcripts were only detected by RT-PCR 30 days after fungus-plant contact, suggesting that RAS-mediated signal transduction pathways are functional during the establishment of symbiosis. The present study demonstrates that alterations in gene expression occur in response to stimuli released by the plant during ECM association and increases the understanding of the association between S. laeve and E. grandis.


Asunto(s)
Basidiomycota/metabolismo , ADN Ribosómico/metabolismo , Eucalyptus/metabolismo , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Genes ras , Micorrizas/metabolismo , Basidiomycota/genética , ADN Ribosómico/genética , Eucalyptus/genética , Proteínas Fúngicas/genética , Micorrizas/genética , Micorrizas/crecimiento & desarrollo , Transducción de Señal
3.
Microbiol Spectr ; 10(3): e0212521, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35658600

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are oxidative enzymes found in viruses, archaea, and bacteria as well as eukaryotes, such as fungi, algae and insects, actively contributing to the degradation of different polysaccharides. In Aspergillus nidulans, LPMOs from family AA9 (AnLPMO9s), along with an AA3 cellobiose dehydrogenase (AnCDH1), are cosecreted upon growth on crystalline cellulose and lignocellulosic substrates, indicating their role in the degradation of plant cell wall components. Functional analysis revealed that three target LPMO9s (AnLPMO9C, AnLPMO9F and AnLPMO9G) correspond to cellulose-active enzymes with distinct regioselectivity and activity on cellulose with different proportions of crystalline and amorphous regions. AnLPMO9s deletion and overexpression studies corroborate functional data. The abundantly secreted AnLPMO9F is a major component of the extracellular cellulolytic system, while AnLPMO9G was less abundant and constantly secreted, and acts preferentially on crystalline regions of cellulose, uniquely displaying activity on highly crystalline algae cellulose. Single or double deletion of AnLPMO9s resulted in about 25% reduction in fungal growth on sugarcane straw but not on Avicel, demonstrating the contribution of LPMO9s for the saprophytic fungal lifestyle relies on the degradation of complex lignocellulosic substrates. Although the deletion of AnCDH1 slightly reduced the cellulolytic activity, it did not affect fungal growth indicating the existence of alternative electron donors to LPMOs. Additionally, double or triple knockouts of these enzymes had no accumulative deleterious effect on the cellulolytic activity nor on fungal growth, regardless of the deleted gene. Overexpression of AnLPMO9s in a cellulose-induced secretome background confirmed the importance and applicability of AnLPMO9G to improve lignocellulose saccharification. IMPORTANCE Fungal lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that boost plant biomass degradation in combination with glycoside hydrolases. Secretion of LPMO9s arsenal by Aspergillus nidulans is influenced by the substrate and time of induction. These findings along with the biochemical characterization of novel fungal LPMO9s have implications on our understanding of their concerted action, allowing rational engineering of fungal strains for biotechnological applications such as plant biomass degradation. Additionally, the role of oxidative players in fungal growth on plant biomass was evaluated by deletion and overexpression experiments using a model fungal system.


Asunto(s)
Aspergillus nidulans , Oxigenasas de Función Mixta , Aspergillus nidulans/genética , Celulosa/química , Celulosa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lignina , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Polisacáridos , Secretoma
4.
Bioresour Technol ; 313: 123616, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32563792

RESUMEN

Trichoderma harzianum has attracting attention for its potential alternative use in biofuel production, due to a recognized competence for high diversity glycoside hydrolases (GH) enzyme complex, including higher ß-glucosidases and auxiliary proteins, using low-cost carbon sources. This strain constitutively overexpressed the global regulator putative methyltransferase - LAE1, in order to improve the GHs production. The recombinant strain achieved 79-fold increase in lae1 expression and high GHs productivity. The evaluation of the LAE1 impact to induce the GHs used soluble and lignocellulose inexpensive carbon sources in a stirred-tank bioreactor. Using sugarcane bagasse with sucrose, the overexpression of lae1 resulted in significantly increment of gh61b (31x), cel7a (25x), bgl1(20x) and xyn3 (20x) genes expression. Reducing sugar released from pretreated sugarcane bagasse, which hydrolyzed by recombinant crude enzyme cocktail, achieved 41% improvement. Therefore, lae1 overexpression effectively is a promising improving GHs target for biomass degradation by T. harzianum.


Asunto(s)
Celulasas , Saccharum , Trichoderma , Biomasa , Metiltransferasas
5.
Biotechnol Biofuels ; 12: 269, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31754374

RESUMEN

BACKGROUND: ß-Xylosidases are glycoside hydrolases (GHs) that cleave xylooligosaccharides and/or xylobiose into shorter oligosaccharides and xylose. Aspergillus nidulans is an established genetic model and good source of carbohydrate-active enzymes (CAZymes). Most fungal enzymes are N-glycosylated, which influences their secretion, stability, activity, signalization, and protease protection. A greater understanding of the N-glycosylation process would contribute to better address the current bottlenecks in obtaining high secretion yields of fungal proteins for industrial applications. RESULTS: In this study, BxlB-a highly secreted GH3 ß-xylosidase from A. nidulans, presenting high activity and several N-glycosylation sites-was selected for N-glycosylation engineering. Several glycomutants were designed to investigate the influence of N-glycans on BxlB secretion and function. The non-glycosylated mutant (BxlBnon-glyc) showed similar levels of enzyme secretion and activity compared to the wild-type (BxlBwt), while a partially glycosylated mutant (BxlBN1;5;7) exhibited increased activity. Additionally, there was no enzyme secretion in the mutant in which the N-glycosylation context was changed by the introduction of four new N-glycosylation sites (BxlBCC), despite the high transcript levels. BxlBwt, BxlBnon-glyc, and BxlBN1;5;7 formed similar secondary structures, though the mutants had lower melting temperatures compared to the wild type. Six additional glycomutants were designed based on BxlBN1;5;7, to better understand its increased activity. Among them, the two glycomutants which maintained only two N-glycosylation sites each (BxlBN1;5 and BxlBN5;7) showed improved catalytic efficiency, whereas the other four mutants' catalytic efficiencies were reduced. The N-glycosylation site N5 is important for improved BxlB catalytic efficiency, but needs to be complemented by N1 and/or N7. Molecular dynamics simulations of BxlBnon-glyc and BxlBN1;5 reveals that the mobility pattern of structural elements in the vicinity of the catalytic pocket changes upon N1 and N5 N-glycosylation sites, enhancing substrate binding properties which may underlie the observed differences in catalytic efficiency between BxlBnon-glyc and BxlBN1;5. CONCLUSIONS: This study demonstrates the influence of N-glycosylation on A. nidulans BxlB production and function, reinforcing that protein glycoengineering is a promising tool for enhancing thermal stability, secretion, and enzymatic activity. Our report may also support biotechnological applications for N-glycosylation modification of other CAZymes.

6.
Microb Biotechnol ; 11(2): 346-358, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29316319

RESUMEN

Filamentous fungi are robust cell factories and have been used for the production of large quantities of industrially relevant enzymes. However, the production levels of heterologous proteins still need to be improved. Therefore, this article aimed to investigate the global proteome profiling of Aspergillus nidulans recombinant strains in order to understand the bottlenecks of heterologous enzymes production. About 250, 441 and 424 intracellular proteins were identified in the control strain Anid_pEXPYR and in the recombinant strains Anid_AbfA and Anid_Cbhl respectively. In this context, the most enriched processes in recombinant strains were energy pathway, amino acid metabolism, ribosome biogenesis, translation, endoplasmic reticulum and oxidative stress, and repression under secretion stress (RESS). The global protein profile of the recombinant strains Anid_AbfA and Anid_Cbhl was similar, although the latter strain secreted more recombinant enzyme than the former. These findings provide insights into the bottlenecks involved in the secretion of recombinant proteins in A. nidulans, as well as in regard to the rational manipulation of target genes for engineering fungal strains as microbial cell factories.


Asunto(s)
Aspergillus nidulans/química , Enzimas/biosíntesis , Proteoma/análisis , Proteínas Recombinantes/biosíntesis , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Enzimas/genética , Proteínas Recombinantes/genética
7.
J Biotechnol ; 246: 24-32, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28192217

RESUMEN

This work investigates the influence of the positive regulator XYR1 of Trichoderma harzianum on the production of cellulolytic enzymes, using sugarcane bagasse as carbon source. Constitutive expression of xyr1 was achieved under the control of the strong Trichoderma reesei pki1 promoter. Five clones with xyr1 overexpression achieved higher xyr1 expression and greater enzymatic productivity when cultivated under submerged fermentation, hence validating the genetic construction for T. harzianum. Clone 5 presented a relative expression of xyr1 26-fold higher than the parent strain and exhibited 66, 37, and 36% higher values for filter paper activity, xylanase activity, and ß-glucosidase activity, respectively, during cultivation in a stirred-tank bioreactor. The overexpression of xyr1 in T. harzianum resulted in an enzymatic complex with significantly improved performance in sugarcane bagasse saccharification, with an enhancement of 25% in the first 24h. Our results also show that constitutive overexpression of xyr1 leads to the induction of several important players in biomass degradation at early (24h) and also late (48h) timepoints of inoculation. However, we also observed that the carbon catabolite repressor CRE1 was upregulated in xyr1 overexpression mutants. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression and suggest an attractive approach for increasing total cellulase productivity in T. harzianum.


Asunto(s)
Celulasas/genética , Celulosa/química , Factores de Transcripción/genética , Trichoderma/crecimiento & desarrollo , Técnicas de Cultivo Celular por Lotes , Biomasa , Reactores Biológicos , Celulasas/metabolismo , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutación , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Activación Transcripcional , Trichoderma/genética , Trichoderma/metabolismo , Regulación hacia Arriba
8.
Biotechnol Biofuels ; 9: 168, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27508003

RESUMEN

BACKGROUND: The genus Aspergillus includes microorganisms that naturally degrade lignocellulosic biomass, secreting large amounts of carbohydrate-active enzymes (CAZymes) that characterize their saprophyte lifestyle. Aspergillus has the capacity to perform post-translational modifications (PTM), which provides an additional advantage for the use of these organisms as a host for the production of heterologous proteins. In this study, the N-linked glycosylation of CAZymes identified in the secretome of Aspergillus nidulans grown on lignocellulose was mapped. RESULTS: Aspergillus nidulans was grown in glucose, xylan and pretreated sugarcane bagasse (SCB) for 96 h, after which glycoproteomics and glycomics were carried out on the extracellular proteins (secretome). A total of 265 proteins were identified, with 153, 210 and 182 proteins in the glucose, xylan and SCB substrates, respectively. CAZymes corresponded to more than 50 % of the total secretome in xylan and SCB. A total of 182 N-glycosylation sites were identified, of which 121 were detected in 67 CAZymes. A prevalence of the N-glyc sequon N-X-T (72.2 %) was observed in N-glyc sites compared with N-X-S (27.8 %). The amino acids flanking the validated N-glyc sites were mainly composed of hydrophobic and polar uncharged amino acids. Selected proteins were evaluated for conservation of the N-glyc sites in Aspergilli homologous proteins, but a pattern of conservation was not observed. A global analysis of N-glycans released from the proteins secreted by A. nidulans was also performed. While the proportion of N-glycans with Hex5 to Hex9 was similar in the xylan condition, a prevalence of Hex5 was observed in the SCB and glucose conditions. CONCLUSIONS: The most common and frequent N-glycosylated motifs, an overview of the N-glycosylation of the CAZymes and the number of mannoses found in N-glycans were analyzed. There are many bottlenecks in protein production by filamentous fungi, such as folding, transport by vesicles and secretion, but N-glycosylation in the correct context is a fundamental event for defining the high levels of secretion of target proteins. A comprehensive analysis of the protein glycosylation processes in A. nidulans will assist with a better understanding of glycoprotein structures, profiles, activities and functions. This knowledge can help in the optimization of heterologous expression and protein secretion in the fungal host.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA