Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant Mol Biol ; 101(1-2): 65-79, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31190320

RESUMEN

KEY MESSAGE: Overexpression of BoMYB29 gene up-regulates the aliphatic glucosinolate pathway in Brassica oleracea plants increasing the production of the anti-cancer metabolite glucoraphanin, and the toxic and pungent sinigrin. Isothiocyanates, the bio-active hydrolysis products of glucosinolates, naturally produced by several Brassicaceae species, play an important role in human health and agriculture. This study aims at correlating the content of aliphatic glucosinolates to the expression of genes involved in their synthesis in Brassica oleracea, and perform functional analysis of BoMYB29 gene. To this purpose, three genotypes were used: a sprouting broccoli, a cabbage, and a wild genotype (Winspit), a high glucosinolate containing accession. Winspit showed the highest transcript level of BoMYB28, BoMYB29 and BoAOP2 genes, and BoAOP2 expression was positively correlated with that of the two MYB genes. Further analyses of the aliphatic glucosinolates also showed a positive correlation between the expression of BoAOP2 and the production of sinigrin and gluconapin in Winspit. The Winspit BoMYB29 CDS was cloned and overexpressed in Winspit and in the DH AG1012 line. Overexpressing Winspit plants produced higher quantities of alkenyl glucosinolates, such as sinigrin. Conversely, the DH AG1012 transformants showed a higher production of methylsulphinylalkyl glucosinolates, including glucoraphanin, and, despite an up-regulation of the aliphatic glucosinolate genes, no increase in alkenyl glucosinolates. The latter may be explained by the absence of a functional AOP2 gene in DH AG1012. Nevertheless, an extract of DH AG1012 lines overexpressing BoMYB29 provided a chemoprotective effect on human colon cells. This work exemplifies how the genetic diversity of B. oleracea may be used by breeders to select for higher expression of transcription factors for glucosinolate biosynthesis to improve its natural, health-promoting properties.


Asunto(s)
Brassica/genética , Glucosinolatos/metabolismo , Extractos Vegetales/farmacología , Factores de Transcripción/metabolismo , Brassica/química , Brassica/metabolismo , Expresión Génica , Variación Genética , Células HT29 , Humanos , Imidoésteres/metabolismo , Isotiocianatos/metabolismo , Oximas , Extractos Vegetales/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Sulfóxidos , Factores de Transcripción/genética
2.
Funct Integr Genomics ; 18(6): 645-657, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29948458

RESUMEN

Nitrogen is an essential macronutrient for plant growth and reproduction. In durum wheat, an appropriate nitrogen soil availability is essential for an optimal seed development. miRNAs contribute to the environmental change adaptation of plants through the regulation of important genes involved in stress processes. In this work, nitrogen stress response was evaluated in durum wheat seedlings of Ciccio and Svevo cultivars. Eight small RNA libraries from leaves and roots of chronically stressed plants were sequenced to detect conserved and novel miRNAs. A total of 294 miRNAs were identified, 7 of which were described here for the first time. The expression level of selected miRNAs and target genes was analyzed by qPCR in seedlings subjected to chronic (Ciccio and Svevo, leaves and roots) or short-term (Svevo roots) stress conditions. Some miRNAs showed an immediate stress response, and their level of expression was either maintained or returned to a basal level during a long-term stress. Other miRNAs showed a gradual up- or downregulation during the short-term stress. The newly identified miRNA ttu-novel-106 showed an immediate strongly downregulation after nitrogen stress, which was negatively correlated with the expression of MYB-A, its putative target gene. PHO2 gene was significantly upregulated after 24-48-h stress, corresponding to a downregulation of miR399b. Ttu-miR399b putative binding sites in the 5' UTR region of the Svevo PHO2 gene were identified in the A and B genomes. Both MYB-A and PHO2 genes were validated for their cleavage site using 5' RACE assay.


Asunto(s)
MicroARNs/genética , Estrés Fisiológico/genética , Triticum/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Triticum/metabolismo
3.
BMC Genomics ; 17: 505, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27448633

RESUMEN

BACKGROUND: The allotetraploid durum wheat [Triticum turgidum subsp. durum (Desf.) Husn.] is a highly economically important species especially in the Mediterranean basin. However, its genomics, transcriptomics and in particular microRNAome are still largely unknown. RESULTS: In the present work, two small RNA libraries from durum wheat Ciccio and Svevo cultivars were generated from different tissues at the late milk (Z77) developmental stage. A total of 167 conserved and 98 potential novel miRNAs were identified in the two libraries and interestingly, three novel miRNAs were found to be derived from ribosomal RNA. Putative target genes were predicted for conserved and novel miRNAs, the majority of which interact with nucleic acids, according to GO terms relative to molecular function. Quantitative qPCR analysis showed that several miRNAs identified were differentially expressed in the mature (Z77) developmental stage compared to young (Z14) tissues. Moreover, target gene expression analysis suggested that in roots, the putative genes encoding for the SQUAMOSA SPL2 and TGA1 proteins are regulated by ttu-miR156n, while MYB3 transcription factor by ttu-miR319f. Additionally, the Photosystem II P680 chlorophyll A apoprotein gene showed an expression level negatively correlated to that of ttu-novel-48 in leaves. CONCLUSION: Our results suggest that, in durum wheat, these genes may play important roles in root/leaf development and are subjected to miRNA regulation. The prediction of novel miRNAs putatively derived from ribosomal RNA opens new perspectives on the study of plant miRNAs.


Asunto(s)
MicroARNs/genética , Transcriptoma , Triticum/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/química , Conformación Molecular , Conformación de Ácido Nucleico , Interferencia de ARN
4.
Proc Natl Acad Sci U S A ; 107(50): 21611-6, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21115826

RESUMEN

Although commonplace in human disease genetics, genome-wide association (GWA) studies have only relatively recently been applied to plants. Using 32 phenotypes in the inbreeding crop barley, we report GWA mapping of 15 morphological traits across ∼500 cultivars genotyped with 1,536 SNPs. In contrast to the majority of human GWA studies, we observe high levels of linkage disequilibrium within and between chromosomes. Despite this, GWA analysis readily detected common alleles of high penetrance. To investigate the potential of combining GWA mapping with comparative analysis to resolve traits to candidate polymorphism level in unsequenced genomes, we fine-mapped a selected phenotype (anthocyanin pigmentation) within a 140-kb interval containing three genes. Of these, resequencing the putative anthocyanin pathway gene HvbHLH1 identified a deletion resulting in a premature stop codon upstream of the basic helix-loop-helix domain, which was diagnostic for lack of anthocyanin in our association and biparental mapping populations. The methodology described here is transferable to species with limited genomic resources, providing a paradigm for reducing the threshold of map-based cloning in unsequenced crops.


Asunto(s)
Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Hordeum/genética , Polimorfismo Genético , Proteínas de Arabidopsis/genética , Marcadores Genéticos , Genoma de Planta , Genotipo , Proteínas de Homeodominio/genética , Humanos , Datos de Secuencia Molecular , Fenotipo , Análisis de Componente Principal
5.
Plants (Basel) ; 12(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36616264

RESUMEN

The sweet cherry is an important fruit species that is widespread globally. In addition to the well-known traditional and modern varieties, a myriad of landraces is present in Europe, as well as in southern Italy. This study aims to evaluate the population structure, genetic relationships, and cases of duplicate samples in a collection of 143 accessions using GBS-derived SNP markers. The genetic material under investigation includes modern commercial varieties, ancient European and American varieties, landraces, and individuals retrieved from small orchards. Some of the known varieties were genetically analyzed here for the first time. In addition, several genotypes were collected from the Basilicata region (southern Italy), an area largely unexplored for sweet cherry genetic resources. The relationships among genotypes were assessed using four different methods: allele frequency and ancestry estimation, principal component analysis, Neighbor-Joining tree, and identity-by-state estimation. The analyses returned quite congruent results and highlighted the presence of four main genetic groups, namely: (i) American varieties, (ii) the 'Germersdorfer-Ferrovia' cluster, (iii) the 'Burlat' group, and (iv) the group of Italian landraces. The main drivers of clustering were ancestry, geographical distribution, and some important traits such as self-compatibility. The sweet cherries from Basilicata, herewith examined for the first time, were mostly distributed within the group of Italian landraces, being particularly linked to the autochthonous varieties of the Campania region. However, some genotypes were outside this group, thus suggesting the introduction of genetic material from other Italian regions or from European countries. The considerable amount of American and European modern varieties analyzed are genetically very closely related, suggesting a reduced genetic basis. In addition, we highlighted the discriminating ability of SNP markers to distinguish between an original variety and its mutant. Overall, our results may be useful in defining conservation strategies for sweet cherry germplasm and developing future breeding programs to enlarge the genetic basis of commercial varieties.

6.
Plants (Basel) ; 8(8)2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31434274

RESUMEN

Cereals and, especially, rice, maize, and wheat, are essential commodities, on which human nutrition is based. Expanding population and food demand have required higher production which has been achieved by increasing fertilization, and especially nitrogen supply to cereal crops. In fact, nitrogen is a crucial nutrient for the plant, but excessive use poses serious environmental and health issues. Therefore, increasing nitrogen use efficiency in cereals is of pivotal importance for sustainable agriculture. The main steps in the use of nitrogen are uptake and transport, reduction and assimilation, and translocation and remobilization. Many studies have been carried out on the genes involved in these phases, and on transcription factors regulating these genes. Lately, increasing attention has been paid to miRNAs responding to abiotic stress, including nutrient deficiency. Many miRNAs have been found to regulate transcription factors acting on the expression of specific genes for nitrogen uptake or remobilization. Recent studies on gene regulatory networks have also demonstrated that miRNAs can interact with several nodes in the network, functioning as key regulators in nitrogen metabolism.

7.
PLoS One ; 13(10): e0205988, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30352087

RESUMEN

Exploiting the biodiversity of crops and their wild relatives is fundamental for maintaining and increasing food security. The species Cynara cardunculus includes three taxa: the globe artichoke, one of the most important Mediterranean vegetables, the leafy cardoon, and the wild cardoon. In this study, genotyping by sequencing (GBS) was successfully applied to reveal thousands of polymorphisms in a C. cardunculus germplasm collection, including 65 globe artichoke, 9 leafy cardoon, and 21 wild cardoon samples. The collection showed a strong population structure at K = 2, separating the globe artichoke from the leafy and wild cardoon. At higher K values, further substructures were observed, in which the wild cardoon was separated from the leafy cardoon, and the latter included the Spanish wild cardoons, while the wild sample from Portugal was admixed. Moreover, subpopulations within the globe artichoke set were highlighted. Structure analysis restricted to the globe artichoke dataset pointed out genetic differentiation between the ˝Catanesi˝ typology and all the other samples (K = 2). At higher values of K, the separation of the ˝Catanesi˝ group still held true, and green headed landraces from Apulia region, Italy (˝Green Apulian˝) formed a distinct subpopulation. ˝Romaneschi˝ artichoke types fell in a variable group with admixed samples, indicating that they should not be considered as a genetically uniform typology. The results of principal component analysis and Neighbor-Joining hierarchical clustering were consistent with structure results, and in addition provided a measure of genetic relationships among individual genotypes. Both analyses attributed the wild material from Spain and Portugal to the cultivated cardoon group, supporting the idea that this might be indeed a feral form of the leafy cardoon. Different reproductive habit and possibly selective pressure led to a slower LD decay in artichoke compared to cardoon. Genotyping by sequencing has proven a reliable methodology to obtain valuable SNPs and assess population genetics in C. cardunculus.


Asunto(s)
Cynara scolymus/genética , Cynara/genética , Técnicas de Genotipaje/métodos , Análisis de Secuencia de ADN/métodos , Genotipo , Desequilibrio de Ligamiento/genética , Filogenia , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal
8.
PLoS One ; 12(8): e0183253, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28813501

RESUMEN

Durum wheat highly depends on nitrogen for seed development and yield, and the obtainment of varieties with a better nitrogen use efficiency is crucial to reduce production costs and environmental pollution. In this study, sequencing of two small RNA libraries obtained from tissues of Ciccio and Svevo cultivars grown under nitrogen starvation conditions produced 84 novel, and 161 conserved miRNAs. Of these, 7 novel and 13 known miRNAs were newly identified in this work. Quantitative PCR analysis of selected miRNAs highlighted that the expression levels of some of them depends on the tissue and on the cultivar, Svevo being the most responsive to nitrogen starvation. A number of target genes were predicted to be involved in nitrogen metabolism. An inverse correlation for the qPCR expression data of miRNA/target pairs miR399b/PHO2, miR393c/AFB2, ttu-novel-61/CCAAT-TF was observed in specific tissues or cultivar. Especially, ttu-novel-61 was down-regulated and its target CCAAT-TF up-regulated in almost all tissues both in Svevo and in Ciccio. Moreover, CCAAT-TF was confirmed to be cleaved by ttu-novel-61 at the expected site. The discovery of miRNAs involved in the response to nitrogen stress represents an important step towards functional analyses, with the final aim to design strategies for improving nitrogen use efficiency in durum wheat.


Asunto(s)
Grano Comestible/metabolismo , MicroARNs/genética , Nitrógeno/metabolismo , Triticum/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología
9.
Sci Rep ; 7(1): 1176, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446759

RESUMEN

Nitrogen (N) is a key macronutrient representing a limiting factor for plant growth and development and affects productivity in wheat. In this study, durum wheat response to N chronic starvation during grain filling was investigated through a transcriptomic approach in roots, leaves/stems, flag leaf and spikes of cv. Svevo. Nitrogen stress negatively influenced plant height, tillering, flag leaf area, spike and seed traits, and total N content. RNA-seq data revealed 4,626 differentially expressed genes (DEGs). Most transcriptomic changes were observed in roots, with 3,270 DEGs, while 963 were found in leaves/stems, 470 in flag leaf, and 355 in spike tissues. A total of 799 gene ontology (GO) terms were identified, 180 and 619 among the upregulated and downregulated genes, respectively. Among the most addressed GO categories, N compound metabolism, carbon metabolism, and photosynthesis were mostly represented. Interesting DEGs, such as N transporters, genes involved in N assimilation, along with transcription factors, protein kinases and other genes related to stress were highlighted. These results provide valuable information about the transcriptomic response to chronic N stress in durum wheat, which could be useful for future improvement of N use efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA