Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
New Phytol ; 243(1): 362-380, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38730437

RESUMEN

Plants typically activate distinct defense pathways against various pathogens. Heightened resistance to one pathogen often coincides with increased susceptibility to another pathogen. However, the underlying molecular basis of this antagonistic response remains unclear. Here, we demonstrate that mutants defective in the transcription factor ETHYLENE-INSENSITIVE 3-LIKE 2 (OsEIL2) exhibited enhanced resistance to the biotrophic bacterial pathogen Xanthomonas oryzae pv oryzae and to the hemibiotrophic fungal pathogen Magnaporthe oryzae, but enhanced susceptibility to the necrotrophic fungal pathogen Rhizoctonia solani. Furthermore, necrotroph-induced OsEIL2 binds to the promoter of OsWRKY67 with high affinity, leading to the upregulation of salicylic acid (SA)/jasmonic acid (JA) pathway genes and increased SA/JA levels, ultimately resulting in enhanced resistance. However, biotroph- and hemibiotroph-induced OsEIL2 targets OsERF083, resulting in the inhibition of SA/JA pathway genes and decreased SA/JA levels, ultimately leading to reduced resistance. Our findings unveil a previously uncharacterized defense mechanism wherein two distinct transcriptional regulatory modules differentially mediate immunity against pathogens with different lifestyles through the transcriptional reprogramming of phytohormone pathway genes.


Asunto(s)
Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oryza , Oxilipinas , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Rhizoctonia , Ácido Salicílico , Xanthomonas , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Xanthomonas/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizoctonia/fisiología , Inmunidad de la Planta/efectos de los fármacos , Mutación/genética , Resistencia a la Enfermedad/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Unión Proteica/efectos de los fármacos
2.
Plant Biotechnol J ; 21(8): 1628-1641, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154202

RESUMEN

Traditional rice blast resistance breeding largely depends on utilizing typical resistance (R) genes. However, the lack of durable R genes has prompted rice breeders to find new resistance resources. Susceptibility (S) genes are potential new targets for resistance genetic engineering using genome-editing technologies, but identifying them is still challenging. Here, through the integration of genome-wide association study (GWAS) and transcriptional analysis, we identified two genes, RNG1 and RNG3, whose polymorphisms in 3'-untranslated regions (3'-UTR) affected their expression variations. These polymorphisms could serve as molecular markers to identify rice blast-resistant accessions. Editing the 3'-UTRs using CRISPR/Cas9 technology affected the expression levels of two genes, which were positively associated with rice blast susceptibility. Knocking out either RNG1 or RNG3 in rice enhanced the rice blast and bacterial blight resistance, without impacting critical agronomic traits. RNG1 and RNG3 have two major genotypes in diverse rice germplasms. The frequency of the resistance genotype of these two genes significantly increased from landrace rice to modern cultivars. The obvious selective sweep flanking RNG3 suggested it has been artificially selected in modern rice breeding. These results provide new targets for S gene identification and open avenues for developing novel rice blast-resistant materials.


Asunto(s)
Genes de Plantas , Oryza , Oryza/genética , Oryza/microbiología , Estudio de Asociación del Genoma Completo , Edición Génica , Resistencia a la Enfermedad/genética , Fitomejoramiento
3.
Theor Appl Genet ; 136(12): 246, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973669

RESUMEN

KEY MESSAGE: qSB12YSB, a major quantitative sheath blight resistance gene originated from rice variety YSBR1 with good breeding potential, was mapped to a 289-Kb region on chromosome 12. Sheath blight (ShB), caused by Rhizoctonia solani kühn, is one of the most serious global rice diseases. Rice resistance to ShB is a typical of quantitative trait controlled by multiple quantitative trait loci (QTLs). Many QTLs for ShB resistance have been reported while only few of them were fine-mapped. In this study, we identified a QTL on chromosome 12, in which the qSB12YSB resistant allele shows significant ShB resistance, by using 150 BC4 backcross inbred lines employing the resistant rice variety YSBR1 as the donor and the susceptible variety Lemont (LE) as the recurrent parent. We further fine-mapped qSB12YSB to a 289-kb region by generating 34 chromosomal segment substitution lines and identified a total of 18 annotated genes as the most likely candidates for qSB12YSB after analyzing resequencing and transcriptomic data. KEGG analysis suggested that qSB12YSB might activate secondary metabolites biosynthesis and ROS scavenging system to improve ShB resistance. qSB12YSB conferred significantly stable resistance in three commercial rice cultivars (NJ9108, NJ5055 and NJ44) in field trials when introduced through marker assisted selection. Under severe ShB disease conditions, qSB12YSB significantly reduced yield losses by up to 13.5% in the LE background, indicating its great breeding potential. Our results will accelerate the isolation of qSB12YSB and its utilization in rice breeding programs against ShB.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Fenotipo , Estudios de Asociación Genética
4.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835070

RESUMEN

MicroRNAs (miRNAs) are a class of conserved small RNA with a length of 21-24 nucleotides in eukaryotes, which are involved in development and defense responses against biotic and abiotic stresses. By RNA-seq, Osa-miR444b.2 was identified to be induced after Rhizoctonia solani (R. solani) infection. In order to clarify the function of Osa-miR444b.2 responding to R. solani infection in rice, transgenic lines over-expressing and knocking out Osa-miR444b.2 were generated in the background of susceptible cultivar Xu3 and resistant cultivar YSBR1, respectively. Over-expressing Osa-miR444b.2 resulted in compromised resistance to R. solani. In contrast, the knocking out Osa-miR444b.2 lines exhibited improved resistance to R. solani. Furthermore, knocking out Osa-miR444b.2 resulted in increased height, tillers, smaller panicle, and decreased 1000-grain weight and primary branches. However, the transgenic lines over-expressing Osa-miR444b.2 showed decreased primary branches and tillers, but increased panicle length. These results indicated that Osa-miR444b.2 was also involved in regulating the agronomic traits in rice. The RNA-seq assay revealed that Osa-miR444b.2 mainly regulated the resistance to rice sheath blight disease by affecting the expression of plant hormone signaling pathways-related genes such as ET and IAA, and transcription factors such as WRKYs and F-boxes. Together, our results suggest that Osa-miR444b.2 negatively mediated the resistance to R. solani in rice, which will contribute to the cultivation of sheath blight resistant varieties.


Asunto(s)
Oryza , Reguladores del Crecimiento de las Plantas , Oryza/genética , Enfermedades de las Plantas/genética , Rhizoctonia/fisiología , Resistencia a la Enfermedad/genética
5.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511211

RESUMEN

Plant height is one of the most crucial components of plant structure. However, due to its complexity, the genetic architecture of rice plant height has not been fully elucidated. In this study, we performed a genome-wide association study (GWAS) to determine rice plant height using 178 commercial rice varieties and identified 37 loci associated with rice plant height (LAPH). Among these loci, in LAPH2, we identified a polygalacturonase gene, OsPG3, which was genetically and functionally associated with rice plant height. The rice plant exhibits a super dwarf phenotype when the knockout of the OsPG3 gene occurs via CRISPR-Cas9 gene-editing technology. RNA-Seq analysis indicated that OsPG3 modulates the expression of genes involved in phytohormone metabolism and cell-wall-biosynthesis pathways. Our findings suggest that OsPG3 plays a vital role in controlling rice plant height by regulating cell wall biosynthesis. Given that rice architecture is one of the most critical phenotypes in rice breeding, OsPG3 has potential in rice's molecular design breeding toward an ideal plant height.


Asunto(s)
Estudio de Asociación del Genoma Completo , Oryza , Oryza/genética , Fitomejoramiento , Genes de Plantas , Fenotipo
6.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835399

RESUMEN

Rice blast, caused by the Magnaporthe oryzae fungus, is one of the most devastating rice diseases worldwide. Developing resistant varieties by pyramiding different blast resistance (R) genes is an effective approach to control the disease. However, due to complex interactions among R genes and crop genetic backgrounds, different R-gene combinations may have varying effects on resistance. Here, we report the identification of two core R-gene combinations that will benefit the improvement of Geng (Japonica) rice blast resistance. We first evaluated 68 Geng rice cultivars at seedling stage by challenging with 58 M. oryzae isolates. To evaluate panicle blast resistance, we inoculated 190 Geng rice cultivars at boosting stage with five groups of mixed conidial suspensions (MCSs), with each containing 5-6 isolates. More than 60% cultivars displayed moderate or lower levels of susceptibility to panicle blast against the five MCSs. Most cultivars contained two to six R genes detected by the functional markers corresponding to 18 known R genes. Through multinomial logistics regression analysis, we found that Pi-zt, Pita, Pi3/5/I, and Pikh loci contributed significantly to seedling blast resistance, and Pita, Pi3/5/i, Pia, and Pit contributed significantly to panicle blast resistance. For gene combinations, Pita+Pi3/5/i and Pita+Pia yielded more stable pyramiding effects on panicle blast resistance against all five MCSs and were designated as core R-gene combinations. Up to 51.6% Geng cultivars in the Jiangsu area contained Pita, but less than 30% harbored either Pia or Pi3/5/i, leading to less cultivars containing Pita+Pia (15.8%) or Pita+Pi3/5/i (5.8%). Only a few varieties simultaneously contained Pia and Pi3/5/i, implying the opportunity to use hybrid breeding procedures to efficiently generate varieties with either Pita+Pia or Pita+Pi3/5/i. This study provides valuable information for breeders to develop Geng rice cultivars with high resistance to blast, especially panicle blast.


Asunto(s)
Magnaporthe , Oryza , Magnaporthe/genética , Genes prv , Oryza/genética , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Resistencia a la Enfermedad/genética
7.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36902415

RESUMEN

Rice is one of the staple foods for the majority of the global population that depends directly or indirectly on it. The yield of this important crop is constantly challenged by various biotic stresses. Rice blast, caused by Magnaporthe oryzae (M. oryzae), is a devastating rice disease causing severe yield losses annually and threatening rice production globally. The development of a resistant variety is one of the most effective and economical approaches to control rice blast. Researchers in the past few decades have witnessed the characterization of several qualitative resistance (R) and quantitative resistance (qR) genes to blast disease as well as several avirulence (Avr) genes from the pathogen. These provide great help for either breeders to develop a resistant variety or pathologists to monitor the dynamics of pathogenic isolates, and ultimately to control the disease. Here, we summarize the current status of the isolation of R, qR and Avr genes in the rice-M. oryzae interaction system, and review the progresses and problems of these genes utilized in practice for reducing rice blast disease. Research perspectives towards better managing blast disease by developing a broad-spectrum and durable blast resistance variety and new fungicides are also discussed.


Asunto(s)
Magnaporthe , Oryza , Resistencia a la Enfermedad/genética , Virulencia/genética , Magnaporthe/genética , Oryza/genética , Enfermedades de las Plantas/genética
8.
Plant Biotechnol J ; 20(2): 335-349, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34582620

RESUMEN

Necrotrophic fungus Rhizoctonia solani Kühn (R. solani) causes serious diseases in many crops worldwide, including rice and maize sheath blight (ShB). Crop resistance to the fungus is a quantitative trait and resistance mechanism remains largely unknown, severely hindering the progress on developing resistant varieties. In this study, we found that resistant variety YSBR1 has apparently stronger ability to suppress the expansion of R. solani than susceptible Lemont in both field and growth chamber conditions. Comparison of transcriptomic profiles shows that the photosynthetic system including chlorophyll biosynthesis is highly suppressed by R. solani in Lemont but weakly in YSBR1. YSBR1 shows higher chlorophyll content than that of Lemont, and inducing chlorophyll degradation by dark treatment significantly reduces its resistance. Furthermore, three rice mutants and one maize mutant that carry impaired chlorophyll biosynthesis all display enhanced susceptibility to R. solani. Overexpression of OsNYC3, a chlorophyll degradation gene apparently induced expression by R. solani infection, significantly enhanced ShB susceptibility in a high-yield ShB-susceptible variety '9522'. However, silencing its transcription apparently improves ShB resistance without compromising agronomic traits or yield in field tests. Interestingly, altering chlorophyll content does not affect rice resistance to blight and blast diseases, caused by biotrophic and hemi-biotrophic pathogens, respectively. Our study reveals that chlorophyll plays an important role in ShB resistance and suppressing chlorophyll degradation induced by R. solani infection apparently improves rice ShB resistance. This discovery provides a novel target for developing resistant crop to necrotrophic fungus R. solani.


Asunto(s)
Oryza , Clorofila , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Rhizoctonia
9.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361711

RESUMEN

Rhizoctonia solani is one of the important pathogenic fungi causing several serious crop diseases, such as maize and rice sheath blight. Current methods used to control the disease mainly depend on spraying fungicides because there is no immunity or high resistance available in crops. Spraying double-strand RNA (dsRNA) for induced-gene silencing (SIGS) is a new potentially sustainable and environmentally friendly tool to control plant diseases. Here, we found that fluorescein-labelled EGFP-dsRNA could be absorbed by R. solani in co-incubation. Furthermore, three dsRNAs, each targeting one of pathogenicity-related genes, RsPG1, RsCATA, and RsCRZ1, significantly downregulated the transcript levels of the target genes after co-incubation, leading to a significant reduction in the pathogenicity of the fungus. Only the spray of RsCRZ1 dsRNA, but not RsPG1 or RsCATA dsRNA, affected fungal sclerotium formation. dsRNA stability on leaf surfaces and its efficiency in entering leaf cells were significantly improved when dsRNAs were loaded on layered double hydroxide (LDH) nanosheets. Notably, the RsCRZ1-dsRNA-LDH approach showed stronger and more lasting effects than using RsCRZ1-dsRNA alone in controlling pathogen development. Together, this study provides a new potential method to control crop diseases caused by R. solani.


Asunto(s)
Oryza , Rhizoctonia , Rhizoctonia/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , ARN Bicatenario/genética , Oryza/genética
10.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269662

RESUMEN

Rice blast caused by Magnaporthe oryzae is one of the most serious fungous diseases in rice. In the past decades, studies have reported that numerous M. oryzae effectors were secreted into plant cells to facilitate inoculation. Effectors target host proteins to assist the virulence of pathogens via the localization of specific organelles, such as the nucleus, endoplasmic reticulum, chloroplast, etc. However, studies on the pathogenesis of peroxisome-targeting effectors are still limited. In our previous study, we analyzed the subcellular localization of candidate effectors from M. oryzae using the agrobacterium-mediated transient expression system in tobacco and found that MoPtep1 (peroxisomes-targeted effector protein 1) localized in plant peroxisomes. Here, we proved that MoPtep1 was induced in the early stage of the M. oryzae infection and positively regulated the pathogenicity, while it did not affect the vegetative growth of mycelia. Subcellular localization results showed that MoPtep1 was localized in the plant peroxisomes with a signal peptide and a cupredoxin domain. Sequence analysis indicated that the homologous protein of MoPtep1 in plant-pathogenic fungi was evolutionarily conserved. Furthermore, MoPtep1 could suppress INF1-induced cell death in tobacco, and the targeting host proteins were identified using the Y2H system. Our results suggested that MoPtep1 is an important pathogenic effector in rice blast.


Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Peroxisomas/metabolismo , Enfermedades de las Plantas/microbiología , Nicotiana/metabolismo , Virulencia/genética
11.
J Environ Sci Health B ; 57(10): 821-834, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36127826

RESUMEN

Rhizoctonia solani AG1-IA is a necrotrophic fungus that causes rice sheath blight and results in severe yield and quality reductions in rice worldwide. Differences of genetic structure and fungicide sensitivity of the pathogen have significant effects on the severity and control effect of this disease in the field. To determine correlations among population genetic structure, geographic origin, growth rate, and fungicide resistance of the pathogen, 293 strains of R. solani were isolated from diseased rice collected from 13 cities of Jiangsu Province and five regions of China. Simple sequence repeat (SSR) molecular marker technology was used to analyze the genetic diversity of these strains, and a total of 74 bands were amplified by nine pairs of primers. Population genetic structure analysis showed that strains from Central China and northern Jiangsu had the highest Nei's gene diversity index and Shannon diversity index. The vast majority of strains grew fast with colony diameters of more than 60.0 mm cultured at 28 °C for 36 h. The half-maximal effective concentration (EC50) of them to tebuconazole, thifluzamide, and propiconazole varied ∼16.2-, 3.8-, and 7.5-fold. However, the genetic diversity of R. solani had no significant correlation with their geographic origin, growth rate or fungicide sensitivity.


Asunto(s)
Fungicidas Industriales , Oryza , Fungicidas Industriales/farmacología , Estructuras Genéticas , Genética de Población , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Rhizoctonia
12.
BMC Genomics ; 22(1): 242, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827423

RESUMEN

BACKGROUND: Plant pathogenic isolates of Rhizoctonia solani anastomosis group 1-intraspecific group IA (AG1-IA) infect a wide range of crops causing diseases such as rice sheath blight (ShB). ShB has become a serious disease in rice production worldwide. Additional genome sequences of the rice-infecting R. solani isolates from different geographical regions will facilitate the identification of important pathogenicity-related genes in the fungus. RESULTS: Rice-infecting R. solani isolates B2 (USA), ADB (India), WGL (India), and YN-7 (China) were selected for whole-genome sequencing. Single-Molecule Real-Time (SMRT) and Illumina sequencing were used for de novo sequencing of the B2 genome. The genomes of the other three isolates were then sequenced with Illumina technology and assembled using the B2 genome as a reference. The four genomes ranged from 38.9 to 45.0 Mbp in size, contained 9715 to 11,505 protein-coding genes, and shared 5812 conserved orthogroups. The proportion of transposable elements (TEs) and average length of TE sequences in the B2 genome was nearly 3 times and 2 times greater, respectively, than those of ADB, WGL and YN-7. Although 818 to 888 putative secreted proteins were identified in the four isolates, only 30% of them were predicted to be small secreted proteins, which is a smaller proportion than what is usually found in the genomes of cereal necrotrophic fungi. Despite a lack of putative secondary metabolite biosynthesis gene clusters, the rice-infecting R. solani genomes were predicted to contain the most carbohydrate-active enzyme (CAZyme) genes among all 27 fungal genomes used in the comparative analysis. Specifically, extensive enrichment of pectin/homogalacturonan modification genes were found in all four rice-infecting R. solani genomes. CONCLUSION: Four R. solani genomes were sequenced, annotated, and compared to other fungal genomes to identify distinctive genomic features that may contribute to the pathogenicity of rice-infecting R. solani. Our analyses provided evidence that genomic conservation of R. solani genomes among neighboring AGs was more diversified than among AG1-IA isolates and the presence of numerous predicted pectin modification genes in the rice-infecting R. solani genomes that may contribute to the wide host range and virulence of this necrotrophic fungal pathogen.


Asunto(s)
Oryza , Rhizoctonia , China , India , Oryza/genética , Pectinas , Enfermedades de las Plantas , Rhizoctonia/genética
13.
Plant Biotechnol J ; 19(2): 212-214, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32741105

RESUMEN

The rice black-streaked dwarf virus (RBSDV) disease causes severe rice yield losses in Asia. RNA interference (RNAi) has been widely applied to develop antiviral varieties in plants. So far, only a few studies reported the application of RNAi in rice against RBSDV and most of them are lack of enough data to support its breeding potential, which limited the progress on developing RBSDV-resistant variety. In this study, we generated three RNAi constructs to specifically target three RBSDV genes (S1, S2 and S6), respectively. We confirmed that RNAi targeting RBSDV S6 conferred rice with almost full immunity to RBSDV through phenotyping test in eight consecutive years in both artificial inoculation and field trials, while RNAi of S1 or S2 only leads to partially increased resistance. The S6RNAi was also found conferring strong resistance to southern rice black-streaked dwarf virus (SRBSDV), a novel species closely related to RBSDV that outbroke recently in Southern China. In particular, no adverse effects on agronomical and developmental traits were found in S6RNAi transgenic lines. The marker-free transgenic lines with S6RNAi, driven by either maize ubiquitin-1 promoter or rice rbcS green tissue expression promoter, in elite rice background should have great potential in breeding of resistant varieties to both RBSDV and SRBSDV and provide a basis for further safety evaluation and commercial application.


Asunto(s)
Oryza , Virosis , China , Oryza/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Interferencia de ARN
16.
Phytopathology ; 109(10): 1732-1740, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31479403

RESUMEN

Plant polygalacturonase-inhibiting protein (PGIP) is a structural protein that can specifically recognize and bind to fungal polygalacturonase (PG). PGIP plays an important role in plant antifungal activity. In this study, a maize PGIP gene, namely ZmPGIP3, was cloned and characterized. Agarose diffusion assay suggested that ZmPGIP3 could inhibit the activity of PG. ZmPGIP3 expression was significantly induced by wounding, Rhizoctonia solani infection, jasmonate, and salicylic acid. ZmPGIP3 might be related to disease resistance. The gene encoding ZmPGIP3 was posed under the control of the ubiquitin promoter and constitutively expressed in transgenic rice. In an R. solani infection assay, ZmPGIP3 transgenic rice was more resistant to sheath blight than the wild-type rice regardless of the inoculated plant part (leaves or sheaths). Digital gene expression analysis indicated that the expression of some rice PGIP genes significantly increased in ZmPGIP3 transgenic rice, suggesting that ZmPGIP3 might activate the expression of some rice PGIP genes to resist sheath blight. Our investigation of the agronomic traits of ZmPGIP3 transgenic rice showed that ZmPGIP3 overexpression in rice did not show any detrimental phenotypic or agronomic effect. ZmPGIP3 is a promising candidate gene in the transgenic breeding for sheath blight resistance and crop improvement.


Asunto(s)
Resistencia a la Enfermedad/genética , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Rhizoctonia , Regulación de la Expresión Génica de las Plantas , Oryza/microbiología , Plantas Modificadas Genéticamente/microbiología , Rhizoctonia/fisiología
20.
Plant Dis ; 98(8): 1112-1121, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30708790

RESUMEN

Sheath blight (SB) is among the most destructive rice (Oryza sativa) diseases worldwide. SB resistance (SBR) is controlled by quantitative trait loci (QTL). Only a few SB resistance QTLs were confirmed previously in field trials that were independent of morphological traits, a crucial factor in plant breeding. Here, we employed 63 chromosome segment substitution lines (CSSLs) to identify SBR QTLs derived from 'HJX74'. Importantly, these CSSLs all carried the same genetic background as 'HJX74', except in the substituted segment introgressed from susceptible 'Amol3(sona)'. In contrast to most reports that mapped SBR QTLs under complex genetic backgrounds, this approach allowed many CSSLs to consistently retain the agronomic traits of 'HJX74' with moderate resistance, giving the needed high reproducibility in SBR scoring. We have identified five SBR QTLs in field tests. Two of them, qSB11HJX74 and qSB1-1HJX74, conferred the greatest reduction in SB ratings by approximately 0.9 to 1.2 on a 0 to 9 scale. qSB11HJX74 exhibited nearly perfect recessive heredity, whereas qSB1-1HJX74 showed dominant heredity. Using a secondary F2 population and overlapping substitution segment lines, we further mapped qSB11HJX74 and qSB1-1HJX74 to regions of approximately 430 and 930 kb, respectively. The results will accelerate the rice breeding process for resistance to SB disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA