Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(5): e2315362121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38261614

RESUMEN

Carbon-based single-atom catalysts, a promising candidate in electrocatalysis, offer insights into electron-donating effects of metal center on adjacent atoms. Herein, we present a practical strategy to rationally design a model catalyst with a single zinc (Zn) atom coordinated with nitrogen and sulfur atoms in a multilevel carbon matrix. The Zn site exhibits an atomic interface configuration of ZnN4S1, where Zn's electron injection effect enables thermal-neutral hydrogen adsorption on neighboring atoms, pushing the activity boundaries of carbon electrocatalysts toward electrochemical hydrogen evolution to an unprecedented level. Experimental and theoretical analyses confirm the low-barrier Volmer-Tafel mechanism of proton reduction, while the multishell hollow structures facilitate the hydrogen evolution even at high current intensities. This work provides insights for understanding the actual active species during hydrogen evolution reaction and paves the way for designing high-performance electrocatalysts.

2.
J Am Chem Soc ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869376

RESUMEN

Photothermal hydrogenation of carbon dioxide (CO2) into value-added products is an ideal solution for addressing the energy crisis and mitigating CO2 emissions. However, achieving high product selectivity remains challenging due to the simultaneous occurrence of numerous competing intermediate reactions during CO2 hydrogenation. We present a novel approach featuring isolated single-atom nickel (Ni) anchored onto indium oxide (In2O3) nanocrystals, serving as an effective photothermal catalyst for CO2 hydrogenation into methane (CH4) with a remarkable near-unity (∼99%) selectivity. Experiments and theoretical simulations have confirmed that isolated Ni sites on the In2O3 surface can effectively stabilize the intermediate products of the CO2 hydrogenation reaction and reduce the transition state energy barrier, thereby changing the reaction path to achieve ultrahigh selective methanation. This study provides comprehensive insights into the design of single-atom catalysts for the highly selective photothermal catalytic hydrogenation of CO2 to methane.

3.
Nano Lett ; 23(24): 11562-11568, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38054737

RESUMEN

Developing artificial enzymes with excellent catalytic activities and uncovering the structural and chemical determinants remain a grand challenge. Discrete titanium-oxo clusters with well-defined coordination environments at the atomic level can mimic the pivotal catalytic center of natural enzymes and optimize the charge-transfer kinetics. Herein, we report the precise structural tailoring of a self-assembled tetrahedral Ti4Mn3-cluster for photocatalytic CO2 reduction and realize the selective evolution of CO over specific sites. Experiments and theoretical simulation demonstrate that the high catalytic performance of the Ti4Mn3-cluster should be related to the synergy between active Mn sites and the surrounding functional microenvironment. The reduced energy barrier of the CO2 photoreduction reaction and moderate adsorption strength of CO* are beneficial for the high selective evolution of CO. This work provides a molecular scale accurate structural model to give insight into artificial enzyme for CO2 photoreduction.

4.
Angew Chem Int Ed Engl ; 63(7): e202316762, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38038365

RESUMEN

Understanding the correlation between the structural evolution of electrocatalysts and their catalytic activity is both essential and challenging. In this study, we investigate this correlation in the context of the oxygen evolution reaction (OER) by examining the influence of structural disorder during and after dynamic structural evolution on the OER activity of Fe-Ni (oxy)hydroxide catalysts using operando X-ray absorption spectroscopy, alongside other experiments and theoretical calculations. The Debye-Waller factors obtained from extended X-ray absorption fine structure analyses reflect the degree of structural disorder and exhibit a robust correlation with the intrinsic OER activities of the electrocatalysts. The enhanced OER activity of in situ-generated metal (oxy)hydroxides derived from different pre-catalysts is linked to increased structural disorder, offering a promising approach for designing efficient OER electrocatalysts. This strategy may inspire similar investigations in related electrocatalytic energy-conversion systems.

5.
J Am Chem Soc ; 145(50): 27415-27423, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38078702

RESUMEN

Synchronized conversion of CO2 and H2O into hydrocarbons and oxygen via infrared-ignited photocatalysis remains a challenge. Herein, the hydroxyl-coordinated single-site Ru is anchored precisely on the metallic TiN surface by a NaBH4/NaOH reforming method to construct an infrared-responsive HO-Ru/TiN photocatalyst. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (ac-HAADF-STEM) and X-ray absorption spectroscopy (XAS) confirm the atomic distribution of the Ru species. XAS and density functional theory (DFT) calculations unveil the formation of surface HO-RuN5-Ti Lewis pair sites, which achieves efficient CO2 polarization/activation via dual coordination with the C and O atoms of CO2 on HO-Ru/TiN. Also, implanting the Ru species on the TiN surface powerfully boosts the separation and transfer of photoinduced charges. Under infrared irradiation, the HO-Ru/TiN catalyst shows a superior CO2-to-CO transformation activity coupled with H2O oxidation to release O2, and the CO2 reduction rate can further be promoted by about 3-fold under simulated sunlight. With the key reaction intermediates determined by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and predicted by DFT simulations, a possible photoredox mechanism of the CO2 reduction system is proposed.

6.
Small ; 19(25): e2301235, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36922746

RESUMEN

Here, an ultra-highly active Ni-MOF-5 catalyst with high Ni loading for ethylene dimerization is reported. The Ni-MOF-5 catalysts are synthesized by a facile one-pot co-precipitation method at room temperature, where Ni2+ replaces Zn2+ in MOF-5. Unlike Zn2+ with tetrahedral coordination in MOF-5, Ni2+ is coordinated with extra solvent molecules except for four-oxygen from the framework. After removing coordinated solvent molecules, Ni-MOF-5 achieves an ethylene turnover frequency of 352 000 h-1 , corresponding to 9040 g of product per gram of catalyst per hour, at 35 °C and 50 bar, far exceeding the activities of all reported heterogeneous catalysts. The high Ni loading and full exposure structure account for the excellent catalytic performance. Isotope labeling experiments reveal that the catalytic process follows the Cossee-Arlman mechanism, rationalizing the high activity and selectivity of the catalyst. These results demonstrate that Ni-MOF-5 catalysts are very promising for industrial catalytic ethylene dimerization.

7.
Angew Chem Int Ed Engl ; 62(25): e202304634, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076750

RESUMEN

The solar-driven evolution of hydrogen from water using particulate photocatalysts is considered one of the most economical and promising protocols for achieving a stable supply of renewable energy. However, the efficiency of photocatalytic water splitting is far from satisfactory due to the sluggish electron-hole pair separation kinetics. Herein, isolated Mo atoms in a high oxidation state have been incorporated into the lattice of Cd0.5 Zn0.5 S (CZS@Mo) nanorods, which exhibit photocatalytic hydrogen evolution rate of 11.32 mmol g-1 h-1 (226.4 µmol h-1 ; catalyst dosage 20 mg). Experimental and theoretical simulation results imply that the highly oxidized Mo species lead to mobile-charge imbalances in CZS and induce the directional photogenerated electrons transfer, resulting in effectively inhibited electron-hole recombination and greatly enhanced photocatalytic efficiency.


Asunto(s)
Polvo , Electrones , Simulación por Computador , Hidrógeno , Agua
8.
Angew Chem Int Ed Engl ; 62(41): e202309341, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37640691

RESUMEN

Developing efficient electrocatalysts for the oxygen evolution reaction (OER) is paramount to the energy conversion and storage devices. However, the structural complexity of heterogeneous electrocatalysts makes it a great challenge to elucidate the dynamic structural evolution and OER mechanisms. Here, we develop a controllable atom-trapping strategy to extract isolated Mo atom from the amorphous MoOx -decorated CoSe2 (a-MoOx @CoSe2 ) pre-catalyst into Co-based oxyhydroxide (Mo-CoOOH) through an ultra-fast self-reconstruction process during the OER process. This conceptual advance has been validated by operando characterizations, which reveals that the initially rapid Mo leaching can expedite the dynamic reconstruction of pre-catalyst, and simultaneously trap Mo species in high oxidation state into the lattice of in situ generated CoOOH support. Impressively, the OER kinetics of CoOOH has been greatly accelerated after the reverse decoration of Mo species, in which the Mo-CoOOH affords a markedly decreased overpotential of 297 mV at the current density of 100 mA cm-2 . Density functional theory (DFT) calculations demonstrate that the Co species have been greatly activated via the effective electron coupling with Mo species in high oxidation state. These findings open new avenues toward directly synthesizing atomically dispersed electrocatalysts for high-efficiency water splitting.

9.
Nano Lett ; 21(4): 1848-1855, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33550800

RESUMEN

Perturbing the periodic electronic structure of the MoS2 basal plane via vacancy engineering offers an opportunity to explore its intrinsic activity. A significant challenge is the design of vacancy states, which include its type, distribution, and accessibility. Here, well-dispersed and vertically aligned MoS2 nanosheets with an in-plane selectively cleaved Mo-S bond on a carbon matrix (c-MoS2-C) have been prepared by a self-engaged strategy, which synergistically realizes uniform vacancy manufacturing and three-dimensional (3D) self-assembly of the defective MoS2 nanosheets. X-ray adsorption spectroscopy investigation confirms that the cleaved MoS2 basal plane generates newly active edge sites, where the Mo centers feature unsaturated coordination geometry. Theoretical calculations reveal that the exposed interior edge Mo sites represent new active centers for hydrogen adsorption/desorption. As expected, the synthesized c-MoS2-C exhibits markedly enhanced hydrogen evolution activity and superior stability. This in-plane activation strategy could be extended to other types of transition-metal dichalcogenides and catalytic reaction systems.

10.
J Am Chem Soc ; 143(5): 2173-2177, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33508937

RESUMEN

Isolated cobalt atoms have been successfully decorated onto the surface of W18O49 ultrathin nanowires. The Co-atom-decorated W18O49 nanowires (W18O49@Co) greatly accelerate the charge carrier separation and electron transport in the catalytic system. Moreover, the surface decoration with Co atoms modifies the energy configuration of the W18O49@Co hybrid and thus boosts the redox capability of photoexcited electrons for CO2 reduction. The decorated Co atoms work as the real active sites and, perhaps more importantly, perform as a reaction switch to enable the reaction to proceed. The optimized catalyst delivers considerable activity for photocatalytic CO2 reduction, yielding an impressive CO generation rate of 21.18 mmol g-1 h-1.

11.
Small ; 17(22): e2003256, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32725776

RESUMEN

The emergence of Mo-based hybrid zeolitic imidazolate frameworks (HZIFs) with MoO4 units brings substantial advantages to design and synthesize complex Mo-based electrocatalyst that are not expected in their conventional synthesis path. Herein, as a newly proposed concept, a facile temperature-induced on-site conversion approach (TOCA) is developed to realize the transformation of MoO4 units to C-Mo-S triatomic coordination in hierarchical hollow architecture. The optimized hybrid (denoted as MoCSx 1000) shows accelerating oxygen reduction reaction (ORR) kinetics and excellent stability, which are superior to the most reported Mo-based catalysts. Extended X-ray adsorption fine structure (EXAFS) analysis and computational studies reveal that the near-range electronic steering at C-Mo-S triatomic-coordinated nanointerface guarantees moderate ORR intermediates adsorption and thus is responsible for the boosted ORR activity. This work sheds light on exploring the intrinsic activity of catalysts by interfacial electronic steering.

12.
Angew Chem Int Ed Engl ; 59(43): 18954-18959, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32677725

RESUMEN

Developing two-dimensional (2D) and single atomic layered materials is a fascinating challenge. Here we successfully synthesize porphyrin-based monoatomic layer (PML), a freestanding 2D porphyrin-based material of monomer-unit thickness (2.8 Å). The solvothermal method provides a bottom-up approach for tailoring the monoatomic layer from the nanoscale to the milliscale. PMLs containing accurately tailorable M-N4 units (M=Cu and Au) were synthesized, which present metal center-dependent performance for CO2 electrocatalysis. PML with Cu-N4 centers performs high faradaic efficiencies of HCOO- and CH4 (80.86 % and 11.51 % at -0.7 V, respectively) while PML with Au-N4 centers generates HCOO- and CO as major products (40.90 % and 34.40 % at -0.8 V, respectively). Irreversible restructuring behavior of Cu sites is also observed. Based on the graphene-like properties and metal center-selectivity relationships, we believe that PML will play a distinct role in various applications.

13.
Angew Chem Int Ed Engl ; 59(32): 13354-13361, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32359089

RESUMEN

All-inorganic lead halide perovskites are promising candidates for optoelectronic applications. However, fundamental questions remain over the component interaction in the perovskite precursor solution due to the limitation of the most commonly used solvents of N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). Here, we report an interaction tailoring strategy for all-inorganic CsPbI3-x Brx perovskites by involving the ionic liquid solvent methylammonium acetate (MAAc). C=O shows strong interaction with lead (Pb2+ ) and N-H⋅⋅⋅I hydrogen bond formation is observed. The interactions stabilize the perovskite precursor solution and allow production of the high-quality perovskite films by retarding the crystallization. Without the necessity for antisolvent treatment, the one-step air-processing approach delivers photovoltaic cells regardless of humidity, with a high efficiency of 17.10 % along with long operation stability over 1500 h under continuous light illumination.

14.
ACS Nano ; 18(1): 288-298, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-37955363

RESUMEN

Modulation of the local electronic structure of isolated coordination structures plays a critical role in electrocatalysis yet remains a grand challenge. Herein, we have achieved electron perturbation for the isolated iron coordination structure via tuning the iron spin state from a high spin state (FeN4) to a medium state (FeN2B2). The transition of spin polarization facilitates electron penetration into the antibonding π orbitals of nitrogen and effectively activates nitrogen molecules, thereby achieving an ammonia yield of 115 µg h-1 mg-1cat. and a Faradaic efficiency of 24.8%. In situ spectroscopic studies and theoretical calculations indicate that boron coordinate sites, as electron acceptors, can regulate the adsorption energy of NxHy intermediates on the Fe center. FeN2B2 sites favor the NNH* intermediate formation and reduce the energy barrier of rate-determining steps, thus accounting for excellent nitrogen fixation performance. Our strategy provides an effective approach for designing efficient electrocatalysts via precise electronic perturbation.

15.
Nat Commun ; 15(1): 2630, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521857

RESUMEN

Efficiently capturing radioactive methyl iodide (CH3I), present at low concentrations in the high-temperature off-gas of nuclear facilities, poses a significant challenge. Here we present two strategies for CH3I adsorption at elevated temperatures using a unified azolate-based metal-organic framework, MFU-4l. The primary strategy leverages counter anions in MFU-4l as nucleophiles, engaging in metathesis reactions with CH3I. The results uncover a direct positive correlation between CH3I breakthrough uptakes and the nucleophilicity of the counter anions. Notably, the optimal variant featuring SCN- as the counter anion achieves a CH3I capacity of 0.41 g g-1 at 150 °C under 0.01 bar, surpassing all previously reported adsorbents evaluated under identical conditions. Moreover, this capacity can be easily restored through ion exchange. The secondary strategy incorporates coordinatively unsaturated Cu(I) sites into MFU-4l, enabling non-dissociative chemisorption for CH3I at 150 °C. This modified adsorbent outperforms traditional materials and can be regenerated with polar organic solvents. Beyond achieving a high CH3I adsorption capacity, our study offers profound insights into CH3I capture strategies viable for practically relevant high-temperature scenarios.

16.
J Phys Chem Lett ; 14(20): 4876-4885, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37196141

RESUMEN

Identifying the impact of water on iodoplumbate complexes in various solutions is essential for linking the coordination environment of the perovskite precursor to its final perovskite solar cell (PSC) properties. In this study, we propose a digital twin approach based on X-ray absorption fine structure and molecular dynamic simulation to investigate the structure evolution of iodoplumbate complexes in precursor solutions as a function of storage time under a constant humidity environment. A full picture about what water does in the perovskite formation process is brought out, and the "making and breaking" role of water molecules is uncovered to link the structure of iodoplumbate complexes to its final properties. This study sheds light on a full picture about what water does in the perovskite formation process and the role of water, which will lead to developing water-involved strategies for consistent PSC fabrication under ambient conditions.

17.
Adv Sci (Weinh) ; 10(28): e2303217, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37526339

RESUMEN

Atomic-level structural editing is a promising way for facile synthesis and accurately constructing dielectric/magnetic synergistic attenuated hetero-units in electromagnetic wave absorbers (EWAs), but it is hard to realize. Herein, utilizing the rapid explosive volume expansion of the CoFe-bimetallic energetic metallic triazole framework (CoFe@E-MTF) during the heat treatment, the effective absorption bandwidth and the maximum absorption intensity of a series of atomic CoFe-inserted hierarchical porous carbon (CoFe@HPC) EWAs can be modified under the diverse synthetic temperature. Under the filler loading of 15 wt%, the fully covered X and Ku bands at 3 and 2.5 mm for CoFe@HPC800 and the superb minimum reflection loss (RLmin ) of -53.15 dB and specific reflection loss (SRL) of -101.24 dB mg-1 mm-1 for CoFe@HPC1000 are achieved. More importantly, the single-atomic chemical bonding among Co─Fe on the nanopores is captured by extended X-ray absorption fine structure, which reveals the formation mechanism of nanopore-confined vortical dipoles and magnetic domains. This work heralds the infinite possibilities of atomic editing EWA in the future.

18.
Research (Wash D C) ; 6: 0079, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36939451

RESUMEN

Transition metal-based single-atom catalysts (TM-SACs) are promising alternatives to Au- and Ag-based electrocatalysts for CO production through CO2 reduction reaction. However, developing TM-SACs with high activity and selectivity at low overpotentials is challenging. Herein, a novel Fe-based SAC with Si doping (Fe-N-C-Si) was prepared, which shows a record-high electrocatalytic performance toward the CO2-to-CO conversion with exceptional current density (>350.0 mA cm-2) and ~100% Faradaic efficiency (FE) at the overpotential of <400 mV, far superior to the reported Fe-based SACs. Further assembling Fe-N-C-Si as the cathode in a rechargeable Zn-CO2 battery delivers an outstanding performance with a maximal power density of 2.44 mW cm-2 at an output voltage of 0.30 V, as well as high cycling stability and FE (>90%) for CO production. Experimental combined with theoretical analysis unraveled that the nearby Si dopants in the form of Si-C/N bonds modulate the electronic structure of the atomic Fe sites in Fe-N-C-Si to markedly accelerate the key pathway involving *CO intermediate desorption, inhibiting the poisoning of the Fe sites under high CO coverage and thus boosting the CO2RR performance. This work provides an efficient strategy to tune the adsorption/desorption behaviors of intermediates on single-atom sites to improve their electrocatalytic performance.

19.
Nanomicro Lett ; 14(1): 96, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35384519

RESUMEN

Improving the atom utilization of metals and clarifying the M-M' interaction is both greatly significant in assembling high-performance ultra-light electromagnetic wave-absorbing materials. Herein, a high-temperature explosion strategy has been successfully applied to assemble the hierarchical porous carbon sponge with Co-Fe decoration via the pyrolysis of the energetic metal organic framework. The as-constructed hybrid displays a superior reflection loss (RL) value of - 57.7 dB and a specific RL value of - 192 dB mg-1 mm-1 at 12.08 GHz with a layer thickness of 2.0 mm (loading of 15 wt%). The off-axis electron hologram characterizes the highly distributed numerous polarized nanodomain variable capacitors, demonstrating the dipole and interfacial polarization along the edges of the nanopores. More importantly, the X-ray absorption spectroscopy analysis verifies the mutual interaction between the metal cluster and carbon matrix and the electronic coupling responsible for the greatly improved electromagnetic wave absorption.

20.
Adv Mater ; 34(7): e2107293, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34859512

RESUMEN

Inspired by the success of graphene, a series of single- or few-layer 2D materials have been developed and applied in the past decade. Here, the successful preparation of monolayer and bilayer 2D porphyrin-based metal-organic frameworks (MOFs) by a facile solvothermal method is reported. The structure transition from monolayer to bilayer drives distinct electronic properties and restructuring behaviors, which finally results in distinct catalytic pathways towards CO2 electrocatalysis. The monolayer favors CO2 -to-C2 pathway due to the restructuring of CuO4 sites, while CO and HCOO- are the major products over the bilayer. In photocoupled electrocatalysis, the Faradaic efficiency (FE) of the C2 compounds shows a nearly fourfold increase on the monolayer than that under dark conditions (FEC2 increases from 11.9% to 41.1% at -1.4 V). For comparison, the light field plays a negligible effect on the bilayer. The light-induced selectivity optimization is investigated by experimental characterization and density functional theory (DFT) calculations. This work opens up a novel possibility to tune the selectivity of carbon products just by tailoring the layer number of the 2D material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA