Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Opt Express ; 13(11): 6100-6112, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36733750

RESUMEN

Image-guided small animal radiation research platforms allow more precise radiation treatment. Commercially available small animal X-ray irradiators are often equipped with a CT/cone-beam CT (CBCT) component for target guidance. Besides having poor soft-tissue contrast, CBCT unfortunately cannot provide molecular information due to its low sensitivity. Hence, there are extensive efforts to incorporate a molecular imaging component besides CBCT on these radiation therapy platforms. As an extension of these efforts, here we present a theranostic fluorescence tomography/CBCT-guided irradiator platform that provides both anatomical and molecular guidance, which can overcome the limitations of stand-alone CBCT. The performance of our hybrid system is validated using both tissue-like phantoms and mice ex vivo. Both studies show that fluorescence tomography can provide much more accurate quantitative results when CBCT-derived structural information is used to constrain the inverse problem. The error in the recovered fluorescence absorbance reduces nearly 10-fold for all cases, from approximately 60% down to 6%. This is very significant since high quantitative accuracy in molecular information is crucial to the correct assessment of the changes in tumor microenvironment related to radiation therapy.

2.
Front Oncol ; 12: 955004, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965505

RESUMEN

Purpose: The goal of this study is to investigate treatment planning of total marrow irradiation (TMI) using intensity-modulated spot-scanning proton therapy (IMPT). The dosimetric parameters of the intensity-modulated proton plans were evaluated and compared with the corresponding TMI plans generated with volumetric modulated arc therapy (VMAT) using photon beams. Methods: Intensity-modulated proton plans for TMI were created using the Monte Carlo dose-calculation algorithm in the Raystation 11A treatment planning system with spot-scanning proton beams from the MEVION S250i Hyperscan system. Treatment plans were generated with four isocenters placed along the longitudinal direction, each with a set of five beams for a total of 20 beams. VMAT-TMI plans were generated with the Eclipse-V15 analytical anisotropic algorithm (AAA) using a Varian Trilogy machine. Three planning target volumes (PTVs) for the bones, ribs, and spleen were covered by 12 Gy. The dose conformity index, D80, D50, and D10, for PTVs and organs at risk (OARs) for the IMPT plans were quantified and compared with the corresponding VMAT plans. Results: The mean dose for most of the OARs was reduced substantially (5% and more) in the IMPT plans for TMI in comparison with VMAT plans except for the esophagus and thyroid, which experienced an increase in dose. This dose reduction is due to the fast dose falloff of the distal Bragg peak in the proton plans. The conformity index was found to be similar (0.78 vs 0.75) for the photon and proton plans. IMPT plans provided superior superficial dose coverage for the skull and ribs in comparison with VMAT because of increased entrance dose deposition by the proton beams. Conclusion: Treatment plans for TMI generated with IMPT were superior to VMAT plans mainly due to a large reduction in the OAR dose. Although the current IMPT-TMI technique is not clinically practical due to the long overall treatment time, this study presents an enticing alternative to conventional TMI with photons by providing superior dose coverage of the targets, increased sparing of the OARs, and enhanced radiobiological effects associated with proton therapy.

3.
Int J Radiat Oncol Biol Phys ; 109(1): 60-72, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32841681

RESUMEN

PURPOSE: Although vascular alterations in solid tumor malignancies are known to decrease therapeutic delivery, the effects of leukemia-induced bone marrow vasculature (BMV) alterations on therapeutic delivery are not well known. Additionally, functional quantitative measurements of the leukemic BMV during chemotherapy and radiation therapy are limited, largely due to a lack of high-resolution imaging techniques available preclinically. This study develops a murine model using compartmental modeling for quantitative multiphoton microscopy (QMPM) to characterize the malignant BMV before and during treatment. METHODS AND MATERIALS: Using QMPM, live time-lapsed images of dextran leakage from the local BMV to the surrounding bone marrow of mice bearing acute lymphoblastic leukemia (ALL) were taken and fit to a 2-compartment model to measure the transfer rate (Ktrans), fractional extracellular extravascular space (νec), and vascular permeability parameters, as well as functional single-vessel characteristics. In response to leukemia-induced BMV alterations, the effects of 2 to 4 Gy low-dose radiation therapy (LDRT) on the BMV, drug delivery, and mouse survival were assessed post-treatment to determine whether neoadjuvant LDRT before chemotherapy improves treatment outcome. RESULTS: Mice bearing ALL had significantly altered Ktrans, increased νec, and increased permeability compared with healthy mice. Angiogenesis, decreased single-vessel perfusion, and decreased vessel diameter were observed. BMV alterations resulted in disease-dependent reductions in cellular uptake of Hoechst dye. LDRT to mice bearing ALL dilated BMV, increased single-vessel perfusion, and increased daunorubicin uptake by ALL cells. Consequently, LDRT administered to mice before receiving nilotinib significantly increased survival compared with mice receiving LDRT after nilotinib, demonstrating the importance of LDRT conditioning before therapeutic administration. CONCLUSION: The developed QMPM enables single-platform assessments of the pharmacokinetics of fluorescent agents and characterization of the BMV. Initial results suggest BMV alterations after neoadjuvant LDRT may contribute to enhanced drug delivery and increased treatment efficacy for ALL. The developed QMPM enables observations of the BMV for use in ALL treatment optimization.


Asunto(s)
Médula Ósea/irrigación sanguínea , Terapia Neoadyuvante , Neovascularización Patológica , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatología , Leucemia-Linfoma Linfoblástico de Células Precursoras/radioterapia , Dosis de Radiación , Animales , Línea Celular Tumoral , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Dosificación Radioterapéutica , Microambiente Tumoral/efectos de la radiación
4.
IEEE Access ; 8: 93663-93670, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32542176

RESUMEN

Hypofractionated stereotactic body radiotherapy treatments (SBRT) have demonstrated impressive results for the treatment of a variety of solid tumors. The role of tumor supporting vasculature damage in treatment outcome for SBRT has been intensely debated and studied. Fast, non-invasive, longitudinal assessments of tumor vasculature would allow for thorough investigations of vascular changes correlated with SBRT treatment response. In this paper, we present a novel theranostic system which incorporates a fluorescence molecular imager into a commercial, preclinical, microCT-guided, irradiator and was designed to quantify tumor vascular response (TVR) to targeted radiotherapy. This system overcomes the limitations of single-timepoint imaging modalities by longitudinally assessing spatiotemporal differences in intravenously-injected ICG kinetics in tumors before and after high-dose radiation. Changes in ICG kinetics were rapidly quantified by principle component (PC) analysis before and two days after 10 Gy targeted tumor irradiation. A classifier algorithm based on PC data clustering identified pixels with TVR. Results show that two days after treatment, a significant delay in ICG clearance as measured by exponential decay (40.5±16.1% P=0.0405 Paired t-test n=4) was observed. Changes in the mean normalized first and second PC feature pixel values (PC1 & PC2) were found (P=0.0559, 0.0432 paired t-test), suggesting PC based analysis accurately detects changes in ICG kinetics. The PC based classification algorithm yielded spatially-resolved TVR maps. Our first-of-its-kind theranostic system, allowing automated assessment of TVR to SBRT, will be used to better understand the role of tumor perfusion in metastasis and local control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA