Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nature ; 627(8005): 783-788, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38538937

RESUMEN

Controlling the intensity of emitted light and charge current is the basis of transferring and processing information1. By contrast, robust information storage and magnetic random-access memories are implemented using the spin of the carrier and the associated magnetization in ferromagnets2. The missing link between the respective disciplines of photonics, electronics and spintronics is to modulate the circular polarization of the emitted light, rather than its intensity, by electrically controlled magnetization. Here we demonstrate that this missing link is established at room temperature and zero applied magnetic field in light-emitting diodes2-7, through the transfer of angular momentum between photons, electrons and ferromagnets. With spin-orbit torque8-11, a charge current generates also a spin current to electrically switch the magnetization. This switching determines the spin orientation of injected carriers into semiconductors, in which the transfer of angular momentum from the electron spin to photon controls the circular polarization of the emitted light2. The spin-photon conversion with the nonvolatile control of magnetization opens paths to seamlessly integrate information transfer, processing and storage. Our results provide substantial advances towards electrically controlled ultrafast modulation of circular polarization and spin injection with magnetization dynamics for the next-generation information and communication technology12, including space-light data transfer. The same operating principle in scaled-down structures or using two-dimensional materials will enable transformative opportunities for quantum information processing with spin-controlled single-photon sources, as well as for implementing spin-dependent time-resolved spectroscopies.

2.
Nature ; 568(7751): 212-215, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30944471

RESUMEN

Lasers have both ubiquitous applications and roles as model systems in which non-equilibrium and cooperative phenomena can be elucidated1. The introduction of novel concepts in laser operation thus has potential to lead to both new applications and fundamental insights2. Spintronics3, in which both the spin and the charge of the electron are used, has led to the development of spin-lasers, in which charge-carrier spin and photon spin are exploited. Here we show experimentally that the coupling between carrier spin and light polarization in common semiconductor lasers can enable room-temperature modulation frequencies above 200 gigahertz, exceeding by nearly an order of magnitude the best conventional semiconductor lasers. Surprisingly, this ultrafast operation of the resultant spin-laser relies on a short carrier spin relaxation time and a large anisotropy of the refractive index, both of which are commonly viewed as detrimental in spintronics3 and conventional lasers4. Our results overcome the key speed limitations of conventional directly modulated lasers and offer a prospect for the next generation of low-energy ultrafast optical communication.

4.
Nano Lett ; 23(15): 7107-7113, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37506350

RESUMEN

Systems with flat bands are ideal for studying strongly correlated electronic states and related phenomena. Among them, kagome-structured metals such as CoSn have been recognized as promising candidates due to the proximity between the flat bands and the Fermi level. A key next step will be to realize epitaxial kagome thin films with flat bands to enable tuning of the flat bands across the Fermi level via electrostatic gating or strain. Here, we report the band structures of epitaxial CoSn thin films grown directly on the insulating substrates. Flat bands are observed by using synchrotron-based angle-resolved photoemission spectroscopy (ARPES). The band structure is consistent with density functional theory (DFT) calculations, and the transport properties are quantitatively explained by the band structure and semiclassical transport theory. Our work paves the way to realize flat band-induced phenomena through fine-tuning of flat bands in kagome materials.

5.
Nano Lett ; 21(12): 5083-5090, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34097421

RESUMEN

The intrinsic magnetic topological insulators MnBi2Te4 and MnBi2Se4 support novel topological states related to symmetry breaking by magnetic order. Unlike MnBi2Te4, the study of MnBi2Se4 has been inhibited by the lack of bulk crystals, as the van der Waals (vdW) crystal is not the thermodynamic equilibrium phase. Here, we report the layer-by-layer synthesis of vdW MnBi2Se4 crystals using nonequilibrium molecular beam epitaxy. Atomic-resolution scanning transmission electron microscopy and scanning tunneling microscopy identify a well-ordered vdW crystal with septuple-layer base units. The magnetic properties agree with the predicted layered antiferromagnetic ordering but disagree with its predicted out-of-plane orientation. Instead, our samples exhibit an easy-plane anisotropy, which is explained by including dipole-dipole interactions. Angle-resolved photoemission spectroscopy reveals the gapless Dirac-like surface state, which demonstrates that MnBi2Se4 is a topological insulator above the magnetic-ordering temperature. These studies show that MnBi2Se4 is a promising candidate for exploring rich topological phases of layered antiferromagnetic topological insulators.

6.
Phys Rev Lett ; 127(11): 116402, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34558920

RESUMEN

We propose a general and tunable platform to realize high-density arrays of quantum spin-valley Hall kink (QSVHK) states with spin-valley-momentum locking based on a two-dimensional hexagonal topological insulator. Through the analysis of Berry curvature and topological charge, the QSVHK states are found to be topologically protected by the valley-inversion and time-reversal symmetries. Remarkably, the conductance of QSVHK states remains quantized against both nonmagnetic short- and long-range and magnetic long-range disorder, verified by the Green-function calculations. Based on first-principles results and our fabricated samples, we show that QSVHK states, protected with a gap up to 287 meV, can be realized in bismuthene by alloy engineering, surface functionalization, or electric field, supporting nonvolatile applications of spin-valley filters, valves, and waveguides even at room temperature.

7.
Phys Rev Lett ; 126(3): 036802, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33543950

RESUMEN

Topological superconductivity holds promise for fault-tolerant quantum computing. While planar Josephson junctions are attractive candidates to realize this exotic state, direct phase measurements as the fingerprint of the topological transition are missing. By embedding two gate-tunable Al/InAs Josephson junctions in a loop geometry, we measure a π jump in the junction phase with an increasing in-plane magnetic field B_{∥}. This jump is accompanied by a minimum of the critical current, indicating a closing and reopening of the superconducting gap, strongly anisotropic in B_{∥}. Our theory confirms that these signatures of a topological transition are compatible with the emergence of Majorana bound states.

8.
Phys Rev Lett ; 125(15): 157402, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33095598

RESUMEN

In many atomically thin materials, their optical absorption is dominated by excitonic transitions. It was recently found that optical selection rules in these materials are influenced by the band topology near the valleys. We propose that gate-controlled band ordering in a single atomic monolayer, through changes in the valley winding number and excitonic transitions, can be probed in helicity-resolved absorption and photoluminescence. This predicted tunable band topology is confirmed by combining an effective Hamiltonian and a Bethe-Salpeter equation for an accurate description of excitons, with first-principles calculations suggesting its realization in Sb-based monolayers.

9.
Phys Rev Lett ; 124(13): 137001, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32302171

RESUMEN

Topological superconductivity supports exotic Majorana bound states (MBS) which are chargeless zero-energy emergent quasiparticles. With their non-Abelian exchange statistics and fractionalization of a single electron stored nonlocally as a spatially separated MBS, they are particularly suitable for implementing fault-tolerant topological quantum computing. While realizing MBS has focused on one-dimensional systems, the onset of topological superconductivity requires delicate parameter tuning and geometric constraints pose significant challenges for their control and demonstration of non-Abelian statistics. To overcome these challenges, building on recent experiments in planar Josephson junctions (JJs), we propose a MBS platform of X-shaped JJs. This versatile implementation reveals how external flux control of the superconducting phase difference can generate and manipulate multiple MBS pairs to probe non-Abelian statistics. The underlying topological superconductivity exists over a large parameter space, consistent with materials used in our fabrication of such X junctions, as an important step towards scalable topological quantum computing.

10.
Nat Mater ; 22(3): 284-285, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36627483
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA