Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36748496

RESUMEN

An anaerobic bacterial strain, designated strain M3/9T, was isolated from a laboratory-scale biogas fermenter fed with maize silage supplemented with 5 % wheat straw. Cells were straight, non-motile rods, which stained Gram-negative. Optimal growth occurred between 30 and 40°C, at pH 7.5-8.5, and up to 3.9 % (w/v) NaCl was tolerated. When grown on peptone from casein and soymeal, strain M3/9T produced mainly acetic acid, ethanol, and isobutyric acid. The major cellular fatty acids of the novel strain were C16 : 0 and C16 : 0 DMA. The genome of strain M3/9T is 3757  330 bp in size with a G+C content of 38.45 mol%. Phylogenetic analysis allocated strain M3/9T within the family Lachnospiraceae with Clostridium colinum DSM 6011T and Anaerotignum lactatifermentans DSM 14214T being the most closely related species sharing 57.86 and 56.99% average amino acid identity and 16S rRNA gene sequence similarities of 91.58 and 91.26 %, respectively. Based on physiological, chemotaxonomic and genetic data, we propose the description of a novel species and genus Anaeropeptidivorans aminofermentans gen. nov., sp. nov., represented by the type strain M3/9T (=DSM 100058T=LMG 29527T). In addition, an emended description of Clostridium colinum is provided.


Asunto(s)
Biocombustibles , Ácidos Grasos , Filogenia , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Composición de Base , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Clostridium/genética
2.
Appl Microbiol Biotechnol ; 106(4): 1493-1509, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35129654

RESUMEN

In this study, we compared the properties and structures of three fungal GH12 enzymes: the strict endoglucanase Bgh12A and the xyloglucanase Xgh12B from Aspergillus cervinus, and the endoglucanase Egh12 from Thielavia terrestris combining activity on linear ß-glucan and branched xyloglucan. Egh12 from T. terrestris was produced in Pichia pastoris, purified, and characterized as a thermostable enzyme with maximal activity at 70 ºC and a half-life time of 138 min at 65 °C. We for the first time demonstrated that the GH12 endoglucanases Egh12 and Bgh12A, but not the strict xyloglucanase Xgh12B, hydrolyzed (1,3)-ß-linkages in (1,3;1,4)-ß-D-glucooligosaccharides and had transglycosylase activity on (1,3)-ß-D-glucooligosaccharides. Phylogenetic analysis indicated that Egh12 from T. terrestris and Bgh12A from A. cervinus are more related than Bgh12A and Xgh12B isolated from one strain. The X-ray structure of Bgh12A was determined with 2.17 Å resolution and compared with 3D-homology models of Egh12 and Xgh12B. The enzymes have a ß-jelly roll structure with a catalytic cleft running across the protein. Comparative analysis and a docking study demonstrated the importance of endoglucanase-specific loop 1 partly covering the catalytic cleft for correct placement of the linear substrates. Variability in substrate specificity between the GH12 endoglucanases is determined by non-conservative residues in structural loops framing the catalytic cleft. A residue responsible for the thermostability of Egh12 was predicted. The key structural elements and residues described in this study may serve as potential targets for modification aimed at the improvement of enzymatic properties. KEY POINTS: • Thermostable endoglucanase Egh12 from T. terrestris was produced in P. pastoris, purified, and characterized • The X-ray structure of GH12 endoglucanase Bgh12A from A. cervinus was resolved • GH12 endoglucanases, but not GH12 xyloglucanases, hydrolyze (1,3)-ß-linkages in (1,3;1,4)-ß-D-glucooligosaccharides.


Asunto(s)
Celulasa , Sordariales , Aspergillus , Celulasa/metabolismo , Filogenia , Sordariales/metabolismo , Especificidad por Sustrato
3.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34731077

RESUMEN

Strain MD1T is an anaerobic, Gram-stain-negative bacterium isolated from a lab-scale biogas fermenter fed with maize silage. It has a rod-shaped morphology with peritrichously arranged appendages and forms long chains of cells and coccoid structures. The colonies of MD1T were white, circular, slightly convex and had a smooth rim. The isolate is mesophilic, displaying growth between 25 and 45 °C with an optimum at 40 °C. It grew at pH values of pH 6.7-8.2 (optimum, pH 7.1) and tolerated the addition of up to 1.5% (w/v) NaCl to the medium. The main cellular fatty acids of MD1T are C14:0 DMA and C16:0. Strain MD1T fermented xylose, arabinose, glucose, galactose, cellobiose, maltose, maltodextrin10, lactose starch, and xylan, producing mainly 2-propanol and acetic acid. The genome of the organism has a total length of 4163427 bp with a G+C content of 38.5 mol%. The two closest relatives to MD1T are Mobilitalea sibirica P3M-3T and Anaerotaenia torta FH052T with 96.44 or 95.8 % 16S rRNA gene sequence similarity and POCP values of 46.58 and 50.58%, respectively. As MD1T showed saccharolytic and xylanolytic properties, it may play an important role in the biogas fermentation process. Closely related variants of MD1T were also abundant in microbial communities involved in methanogenic fermentation. Based on morphological, phylogenetic and genomic data, the isolated strain can be considered as representing a novel genus in the family Lachnospiraceae, for which the name Variimorphobacter saccharofermentans gen. nov., sp. nov. (type strain MD1T=DSM 110715T=JCM 39125T) is proposed.


Asunto(s)
Biocombustibles , Clostridiales/clasificación , Filogenia , Ensilaje/microbiología , Zea mays , Técnicas de Tipificación Bacteriana , Composición de Base , Biocombustibles/microbiología , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Zea mays/microbiología
4.
Appl Microbiol Biotechnol ; 105(4): 1461-1476, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33521846

RESUMEN

The thermostable endo-processive xyloglucanase MtXgh74 from Myceliophthora thermophila was used to study the influence of aromatic amino acids in the catalytic cleft on the mode of action and the ability of enzyme to reduce xyloglucan viscosity. The enzyme derivative Mut I with mutations W64A/W67A in the "negative" subsites of the catalytic cleft resulted in a 5.5-fold increase of the Km value. Mut I produced oligosaccharides of various lengths in addition to xyloglucan building blocks. The W320A/W321A substitutions in the "positive" subsites of the mutated enzyme Mut II catalytic cleft increased the Km value 54-fold and resulted in an endo-dissociative mode of action. The ability of Mut II to reduce the viscosity of xyloglucan at 50 °C was much better than that of other MtXgh74 variants. Besides, Mut II efficiently reduced viscosity of a natural substrate, the pulp of xyloglucan-containing tamarind seed flour. The Km, Vmax, and kcat values and viscosity reduction ability of the enzyme derivative Mut III (W320A/W321A/G446Y) returned to levels close to that of MtXgh74. The pattern of xyloglucan hydrolysis by Mut III was typical for endo-processive xyloglucanases. The thermostability of Mut I and Mut II at 60 °C decreased significantly compared to the wild type, whereas the thermostability of Mut III at 60 °C restored almost to the MtXgh74-wt value. All mutants lost the ability to cleave the backbone of xyloglucan building blocks which was a characteristic of MtXgh74. Instead they acquired a low branch removing activity. Molecular dynamics simulations revealed the role of mutated amino acids in the complex action mechanism of GH74 enzymes. KEY POINTS: • Endo-processive mode of action of the xyloglucanase MtXgh74 was altered by rational design. • The endo-dissociative mutant Mut II (W320A/W321A) efficiently reduced XyG viscosity. • The substitutions W320A/W321A/G446Y in Mut III recovered the endo-processive mode. • Mut II can be used to reduce the viscosity of biomass slurries containing tamarind seed flour.


Asunto(s)
Glicósido Hidrolasas , Xilanos , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Sordariales , Especificidad por Sustrato , Viscosidad
5.
Int J Syst Evol Microbiol ; 70(2): 1217-1223, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31793857

RESUMEN

In this work, we succeeded in the isolation of a novel species out of a mesophilically operated biogas fermenter fed with maize silage. Strains GS7-6-2T, GS-7K2 and GS-0K3 were isolated from three individual enrichment cultures. 16S rRNA gene sequence comparisons indicated that the isolates had 100 % sequence identity and were most closely related to Anaerosphaera amininiphila WN036T, with which they shared a 16S rRNA gene sequence similarity of 93.1 %. As a representative, strain GS7-6-2T was further characterized. Strain GS7-6-2T was mesophilic with its growth optimum at 30 °C and a pH range from pH 5.5 to 9.5 (optimum, pH 6.0-8.5). Cells were spherical and sometimes arranged into short chains. Growth was possible with up to 3.6 % (w/v) NaCl, but best without additional NaCl. Strain GS7-6-2T produced butyric acid and acetic acid as main fermentation products while growing on GS2 medium. The major cellular fatty acids were C18 : 1ω7c, C16 : 0 and C16 : 1ω9c. The Gram-stain result was negative. The DNA G+C content was 32.8 mol%. Strain GS7-6-2T was able to ferment 16 (comprising four carbohydrates, five amino acids, four organic acids and three nucleotides) out of the 95 tested substrates. Due to the ecological, genetic and phenotypic differences from the most closely affiliated and validly named organism, A. amininiphila WN036T, the isolates represent a novel species within the genus Anaerosphaera, family Peptoniphilaceae, for which the name Anaerosphaera multitolerans sp. nov. is proposed. The type strain is GS7-6-2T (=DSM 107952T=CECT 9705T).


Asunto(s)
Biocombustibles , Reactores Biológicos/microbiología , Clostridiales/clasificación , Filogenia , Ensilaje/microbiología , Zea mays/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , Alemania , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
Appl Microbiol Biotechnol ; 104(20): 8679-8689, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32915256

RESUMEN

Butanol is a platform chemical that is utilized in a wide range of industrial products and is considered a suitable replacement or additive to liquid fuels. So far, it is mainly produced through petrochemical routes. Alternative production routes, for example through biorefinery, are under investigation but are currently not at a market competitive level. Possible alternatives, such as acetone-butanol-ethanol (ABE) fermentation by solventogenic clostridia are not market-ready to this day either, because of their low butanol titer and the high costs of feedstocks. Here, we analyzed wheat middlings and wheat red dog, two wheat milling byproducts available in large quantities, as substrates for clostridial ABE fermentation. We could identify ten strains that exhibited good butanol yields on wheat red dog. Two of the best ABE producing strains, Clostridium beijerinckii NCIMB 8052 and Clostridium diolis DSM 15410, were used to optimize a laboratory-scale fermentation process. In addition, enzymatic pretreatment of both milling byproducts significantly enhanced ABE production rates of the strains C. beijerinckii NCIMB 8052 and C. diolis DSM 15410. Finally, a profitability analysis was performed for small- to mid-scale ABE fermentation plants that utilize enzymatically pretreated wheat red dog as substrate. The estimations show that such a plant could be commercially successful.Key points• Wheat milling byproducts are suitable substrates for clostridial ABE fermentation.• Enzymatic pretreatment of wheat red dog and middlings increases ABE yield.• ABE fermentation plants using wheat red dog as substrate are economically viable. Graphical abstract.


Asunto(s)
Acetona , Butanoles , Clostridium , Etanol , Fermentación
7.
Artículo en Inglés | MEDLINE | ID: mdl-33555241

RESUMEN

An anaerobic bacterial strain, designated MA18T, was isolated from a laboratory-scale biogas fermenter fed with maize silage. Cells stained Gram-negative and performed Gram-negative in the KOH test. The peptidoglycan type was found to be A1y-meso-Dpm direct. The major cellular fatty acids were C14 : 0 iso, C15 : 0 iso, anteiso and iso DMA as well as a C16 unidentified fatty acid. Oxidase and catalase activities were absent. Cells were slightly curved rods, motile, formed spores and measured approximately 0.35 µm in diameter and 3.0-5.0 µm in length. When cultivated on GS2 agar with cellobiose, round, arched, shiny and slightly yellow-pigmented colonies were formed. The isolate was mesophilic to moderately thermophilic with a growth optimum between 40 and 48 °C. Furthermore, neutral pH values were preferred and up to 1.2 % (w/v) NaCl supplemented to the GS2 medium was tolerated. Producing mainly acetate and ethanol, MA18T fermented arabinose, cellobiose, crystalline and amorphous cellulose, ribose, and xylan. The genome of MA18T consists of 4 817 678 bp with a G+C content of 33.16 mol%. In the annotated protein sequences, cellulosomal components were detected. Phylogenetically, MA18T is most closely related to Ruminiclostridium sufflavum DSM 19573T (76.88 % average nucleotide identity of the whole genome sequence; 97.23 % 16S rRNA gene sequence similarity) and can be clustered into one clade with other species of the genus Ruminiclostridium, family Oscillospiraceae, class Clostridia. Based on morphological, physiological and genetic characteristics, this strain represents a novel species in the genus Ruminiclostridium. Therefore, the name Ruminiclostridium herbifermentans sp. nov. is proposed. The type strain is MA18T (=DSM 109966T=JCM 39124T).

8.
Int J Syst Evol Microbiol ; 69(11): 3567-3573, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31429816

RESUMEN

In this work, the isolation and characterization of a novel anaerobic, mesophilic and cellulolytic bacterium is described. Comparative analysis of the almost-complete sequence of the 16S rRNA gene showed that the closest relatives were Hungateiclostridium straminisolvens CSK1T (97.53  %) and Hungateiclostridium thermocellum DSM 2360T (95.42  %). Due to physiological and phylogenetic differences from its closest relatives, a new species is proposed. Cells of N2K1T were observed to be rod-shaped, non-motile, spore-forming, Gram-stain-positive and able to adhere directly to cellulose fibre. Cellulolytic activity and optimal growth were observed at 45 °C and neutral pH (optimum, pH 7.5). Of all tested substrates, only filter paper (cellulose) and cellobiose were used for growth. Arabinose, fructose, glucose, lactose, mannitol, mannose, ribose, starch, sucrose, trehalose, xylan and xylose did not support growth. The main fermentation products were acetic acid and isopropanol. The major cellular fatty acids (>5 %) were C16 : 0iso, C16 : 0 DMA and C16 : 0. The type strain, N2K1T, was isolated from a mesophilically operated, lab-scale biogas fermenter fed with maize silage in Freising, Germany in 2017. The genome assembly of strain N2K1T is 4.04 Mbp with a DNA G+C content of 38.36 mol%. The name Hungateiclostridiummesophilum sp. nov. is proposed for the novel organism. Strain N2K1T (=DSM 107956T; =CECT 9704T) represents the type strain of Hungateiclostridiummesophilum sp. nov.


Asunto(s)
Biocombustibles , Reactores Biológicos/microbiología , Clostridiales/clasificación , Filogenia , Ensilaje/microbiología , Zea mays , Técnicas de Tipificación Bacteriana , Composición de Base , Celulosa/metabolismo , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , Alemania , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
Appl Microbiol Biotechnol ; 103(18): 7553-7566, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31332485

RESUMEN

In spite of intensive exploitation of aspergilli for the industrial production of carbohydrases, little is known about hydrolytic enzymes of fungi from the section Cervini. Novel glycoside hydrolases Bgh12A and Xgh12B from Aspergillus cervinus represent examples of divergent activities within one enzyme family and belong to the GH12 phylogenetic subgroup I (endo-(1,4)-ß-glucanases) and II (endo-xyloglucanases), respectively. The bgh12A and xgh12B genes were identified in the unsequenced genome of A. cervinus using primers designed for conservative regions of the corresponding subgroups and a genome walking approach. The recombinant enzymes were heterologously produced in Pichia pastoris, purified, and characterized. Bgh12A was an endo-(1,4)-ß-glucanase (EC 3.2.1.4) hydrolyzing the unbranched soluble ß-(1,4)-glucans and mixed linkage ß-(1,3;1,4)-D-glucans. Bgh12A exhibited maximum activity on barley ß-glucan (BBG), which amounted to 614 ± 30 U/mg of protein. The final products of BBG and lichenan hydrolysis were glucose, cellobiose, cellotriose, 4-O-ß-laminaribiosyl-glucose, and a range of higher mixed-linkage gluco-oligosaccharides. In contrast, the activity of endo-xyloglucanase Xgh12B (EC 3.2.1.151) was restricted to xyloglucan, with 542 ± 39 U/mg protein. The enzyme cleaved the (1,4)-ß-glycosidic bonds of the xyloglucan backbone at the unsubstituted glucose residues finally generating cellotetraose-based hepta-, octa, and nona-oligosaccharides. Bgh12A and Xgh12B had maximal activity at 55 °C, pH 5.0. At these conditions, the half-time of Xgh12B inactivation was 158 min, whereas the half-life of Bgh12A was 5 min. Recombinant P. pastoris strains produced up to 106 U/L of the target enzymes with at least 75% of recombinant protein in the total extracellular proteins. The Bgh12A and Xgh12B sequences show 43% identity. Strict differences in substrate specificity of Bgh12A and Xgh12B were in congruence with the presence of subgroup-specific structural loops and substrate-binding aromatic residues in the catalytic cleft of the enzymes. Individual composition of aromatic residues in the catalytic cleft defined variability in substrate selectivity within GH12 subgroups I and II.


Asunto(s)
Aspergillus/enzimología , Aspergillus/genética , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/metabolismo , Proteínas Fúngicas/genética , Genoma Fúngico , Glucanos/metabolismo , Glicósido Hidrolasas/genética , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Xilanos/metabolismo , beta-Glucanos/metabolismo
10.
BMC Microbiol ; 18(1): 56, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884129

RESUMEN

BACKGROUND: The genus Bacillus includes a great variety of species with potential applications in biotechnology. While species such as B. subtilis or B. licheniformis are well-known and used to provide various products at industrial scale, other Bacillus species are less characterized and are not yet used in commercial processes. One reason for this is the fact that genetic manipulation of new isolates is usually complicated with conventional techniques which have to be adapted to each new strain. Even in well-established strains, the available transformation protocols often suffer from low efficiencies. RESULTS: In this paper, we provide a new broad host range E. coli/Bacillus shuttle vector, named pBACOV (Bacillus conjugation vector), that can be efficiently transferred to various Bacillus species using a single protocol. A variant of pBACOV carrying the sfGFP gene was successfully transferred to eight different species from the genus Bacillus and to one Paenibacillus species using triparental conjugation ("transmating"). This was achieved using a single protocol and worked for nine out of eleven tested acceptor species. The transmating procedure was used to test expression of the heterologous reporter gene sfGFP under control of the PaprE-promoter from B. subtilis in several Bacillus species in parallel. Expression of sfGFP was found in eight out of nine transmates. For several of the tested species, this is the first report of a method for genetic modification and heterologous gene expression. The expression level, analyzed by measuring the relative sfGFP-fluorescence normalized to the cell density of the cultures, was highest in B. mojavensis. CONCLUSIONS: The new shuttle vector pBACOV can be transferred to many different Bacillus and Paenibacillus species using a simple and efficient transmating protocol. It is a versatile tool facilitating the application of recombinant DNA technology in new as well as established strains, or selection of an ideal host for heterologous gene expression from a multitude of strains. This paves the way for the genetic modification and biotechnological exploitation of the broad diversity of species of Bacillus and related genera as well as different strains from these species.


Asunto(s)
Bacillus/genética , Conjugación Genética , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Genes Reporteros , Ingeniería Genética , Especificidad del Huésped , Paenibacillus/genética , Regiones Promotoras Genéticas
11.
Appl Microbiol Biotechnol ; 102(23): 10147-10159, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30259100

RESUMEN

Due to their high secretion capacity, Gram-positive bacteria from the genus Bacillus are important expression hosts for the high-yield production of enzymes in industrial biotechnology; however, to date, strains from only few Bacillus species are used for enzyme production at industrial scale. Herein, we introduce Paenibacillus polymyxa DSM 292, a member of a different genus, as a novel host for secretory protein production. The model gene cel8A from Clostridium thermocellum was chosen as an easily detectable reporter gene with industrial relevance to demonstrate heterologous expression and secretion in P. polymyxa. The yield of the secreted cellulase Cel8A protein was increased by optimizing the expression medium and testing several promoter sequences in the expression plasmid pBACOV. Quantitative mass spectrometry was used to analyze the secretome in order to identify promising new promoter sequences from the P. polymyxa genome itself. The most abundantly secreted host proteins were identified, and the promoters regulating the expression of their corresponding genes were selected. Eleven promoter sequences were cloned and tested, including well-characterized promoters from Bacillus subtilis and Bacillus megaterium. The best result was achieved with the promoter for the hypothetical protein PPOLYM_03468 from P. polymyxa. In combination with the optimized expression medium, this promoter enabled the production of 5475 U/l of Cel8A, which represents a 6.2-fold increase compared to the reference promoter PaprE. The set of promoters described in this work covers a broad range of promoter strengths useful for heterologous expression in the new host P. polymyxa.


Asunto(s)
Celulasa/biosíntesis , Clostridium thermocellum/genética , Paenibacillus polymyxa/genética , Regiones Promotoras Genéticas , Bacillus megaterium/genética , Bacillus subtilis/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Celulasa/genética , Clostridium thermocellum/enzimología , Medios de Cultivo/química , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Genes Reporteros , Vectores Genéticos , Microbiología Industrial , Paenibacillus polymyxa/enzimología
12.
World J Microbiol Biotechnol ; 34(3): 42, 2018 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-29480332

RESUMEN

An increasing number of researchers working in biology, biochemistry, biotechnology, bioengineering, bioinformatics and other related fields of science are using biological molecules. As the scientific background of the members of different scientific communities is more diverse than ever before, the number of scientists not familiar with the rules for non-ambiguous designation of genetic elements is increasing. However, with biological molecules gaining importance through biotechnology, their functional and unambiguous designation is vital. Unfortunately, naming genes and proteins is not an easy task. In addition, the traditional concepts of bioinformatics are challenged with the appearance of proteins comprising different modules with a respective function in each module. This article highlights basic rules and novel solutions in designation recently used within the community of bacterial geneticists, and we discuss the present-day handling of gene and protein designations. As an example we will utilize a recent mischaracterization of gene nomenclature. We make suggestions for better handling of names in future literature as well as in databases and annotation projects. Our methodology emphasizes the hydrolytic function of multi-modular genes and extracellular proteins from bacteria.


Asunto(s)
Clostridium thermocellum/enzimología , Clostridium thermocellum/genética , Biología Computacional/métodos , Proteínas/genética , Bases de Datos Genéticas , Bases de Datos de Proteínas , Genoma Bacteriano , Genómica/métodos , Glucosidasas/genética , Almacenamiento y Recuperación de la Información/métodos , Anotación de Secuencia Molecular
13.
Anal Bioanal Chem ; 409(30): 7169-7181, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29026979

RESUMEN

The rising importance of accurately detecting oligosaccharides in biomass hydrolyzates or as ingredients in food, such as in beverages and infant milk products, demands for the availability of tools to sensitively analyze the broad range of available oligosaccharides. Over the last decades, HPAEC-PAD has been developed into one of the major technologies for this task and represents a popular alternative to state-of-the-art LC-MS oligosaccharide analysis. This work presents the first comprehensive study which gives an overview of the separation of 38 analytes as well as enzymatic hydrolyzates of six different polysaccharides focusing on oligosaccharides. The high sensitivity of the PAD comes at cost of its stability due to recession of the gold electrode. By an in-depth analysis of the sensitivity drop over time for 35 analytes, including xylo- (XOS), arabinoxylo- (AXOS), laminari- (LOS), manno- (MOS), glucomanno- (GMOS), and cellooligosaccharides (COS), we developed an analyte-specific one-phase decay model for this effect over time. Using this model resulted in significantly improved data normalization when using an internal standard. Our results thereby allow a quantification approach which takes the inevitable and analyte-specific PAD response drop into account. Graphical abstract HPAEC-PAD analysis of oligosaccharides and determination of PAD response drop leading to an improved data normalization.


Asunto(s)
Cromatografía/métodos , Oligosacáridos/química , Fraccionamiento Químico , Sensibilidad y Especificidad
14.
Appl Microbiol Biotechnol ; 101(14): 5653-5666, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28477154

RESUMEN

A xyloglucanase of the GH74 family was identified in the thermophilic fungus strain Myceliophthora thermophila VKPM F-244, and its gene sequence was optimized for cloning and expression in Pichia pastoris. The recombinant xyloglucanase MtXgh74 exhibited the highest activity toward tamarind seed xyloglucan with a K M value of 0.51 ± 0.06 mg/mL. The activities on barley ß-glucan and carboxymethylcellulose were about 4 and 2%, respectively, compared to xyloglucan. Maximum xyloglucanase activity was observed at 70-75 °C and pH 6.5. After pre-incubation at 50 °C, pH 6.0 for 3 h, the enzyme retained 100% of its activity. The half-life of MtXgh74 at 60 °C, pH 6.0 was 40 min. In P. pastoris, MtXgh74 was produced in glycosylated form. The enzyme production in a 1 L bioreactor resulted in a yield of 118 U/mL or 5.3 g/L after 51 h fermentation. Kinetic studies of the hydrolysis product formation suggest that MtXgh74 has an endo-processive mode of action. The final products were the standard xyloglucan building blocks XXXG, XXLG, XLXG, and XLLG. Additionally, MtXgh74 hydrolyzed various linkages within the xyloglucan building blocks XXXG, XXLG, and XLXG (except XLLG) producing diverse low molecular weight oligosaccharides which may be identified by MALDI-TOF as XG, XX, XXG/GXX/XGX, XXX, LG, LX/XL, XLX/XXL, LLG, GXXXG, GXLLG, XLLGX. The unique combination of different activities within one enzyme along with its high thermostability and specificity toward xyloglucan makes MtXgh74 a promising candidate enzyme for industrial applications.


Asunto(s)
Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Pichia/genética , Sordariales/enzimología , Carboximetilcelulosa de Sodio/metabolismo , Clonación Molecular , Estabilidad de Enzimas , Glucanos/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/aislamiento & purificación , Semivida , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Sordariales/genética , Especificidad por Sustrato , Temperatura , Xilanos/metabolismo , beta-Glucanos/metabolismo
15.
Int J Syst Evol Microbiol ; 66(10): 4132-4137, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27453473

RESUMEN

Phylogenetic studies were performed on a group of novel Gram-stain-positive, anaerobic, non-sporulating rod-shaped bacteria isolated from a thermophilic biogas plant. The novel organisms were able to degrade crystalline cellulose. 16S rRNA gene sequence comparison indicated that the isolates SD1DT, SD1G, SD1I and RK1P share 100 % sequence identity, and are most closely related to Herbinix hemicellulosilytica T3/55T with which they share a 16S rRNA gene sequence similarity of 96.4 %. As a representative of the whole group of isolates, strain SD1DT was further characterized. Strain SD1DT was catalase-negative, indole-negative, and produced acetate, ethanol, butyric acid and hydrogen as major end-products during fermentative cellobiose utilization. Cells are rod-shaped, growing optimally at 40-65 °C and pH 6.5-8.5. The major cellular fatty acids (>10 %) were C19 : 0cyc 9,10 dimethyl acetal, C16 : 0 and C14 : 0. The DNA G+C content was 35.1 mol%. Due to the genetic and phenotypic differences to the most closely affiliated species, the isolates represent a novel species of the genus Herbinix within the family Lachnospiraceae, for which the name Herbinix luporum sp. nov. is proposed. The type strain is SD1DT(=DSM 100831T=CECT 8959T).


Asunto(s)
Biocombustibles/microbiología , Celulosa/metabolismo , Clostridiales/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Celobiosa/metabolismo , Clostridiales/genética , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Fermentación , Alemania , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
Int J Syst Evol Microbiol ; 66(11): 4458-4463, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27499077

RESUMEN

A novel Gram-stain-positive, rod-shaped, anaerobic, thermophilic bacterium, strain GGR1T, was isolated from a thermophilic lab-scale biogas fermenter. The novel organism was effectively degrading crystalline cellulose. It seems to play a role in remineralization of plant biomass by hydrolysing its polysaccharides. 16S rRNA gene comparative sequence analysis demonstrated that the isolate formed a hitherto unknown subline within the family Ruminococcaceae. The closest phylogenetic relative of GGR1T among the taxa with validly published names was Clostridiumthermocellum, sharing 94.3 % 16S rRNA gene sequence similarity. Strain GGR1T was catalase-negative, indole-negative and produced acetate and ethanol as major end-products during fermentative cellulose utilization. The major cellular fatty acids (>1 %) were 16 : 0 iso fatty acid and 16 : 0 fatty acid. Cells were rod shaped and grew optimally at 60 °C and pH 7.0. The DNA G+C content was 34.9 mol%. A novel genus and species, Herbivoraxsaccincola gen. nov., sp. nov., is proposed on the basis of phylogenetic analysis and physiological properties of the novel isolate. Strain GGR1T (=DSM 101079T=CECT 9155T) represents the type strain for the novel genus and novel species Herbivoraxsaccincola gen. nov., sp. nov.


Asunto(s)
Biocombustibles/microbiología , Clostridiales/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Reactores Biológicos/microbiología , Celulosa/metabolismo , Clostridiales/genética , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Alemania , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
17.
Int J Syst Evol Microbiol ; 65(8): 2365-2371, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25872956

RESUMEN

Phenotypic and phylogenetic studies were performed on new isolates of a novel Gram-stain-positive, anaerobic, non-sporulating, rod-shaped bacterium isolated from a thermophilic biogas plant. The novel organisms were able to degrade crystalline cellulose. 16S rRNA gene comparative sequence analysis demonstrated that the isolates formed a hitherto unknown subline within the family Lachnospiraceae. As a representative of the whole group of isolates, strain T3/55T was further characterized. The closest relative of T3/55T among the taxa with validly published names is Mobilitalea sibirica, sharing 93.9% 16S rRNA gene sequence similarity. Strain T3/55T was catalase-negative, indole-negative, and produced acetate, ethanol and propionic acid as major end products from cellulose metabolism. The major cellular fatty acids (>1%) were 16 : 0 dimethyl acetal, 16 : 0 fatty acid methyl ester and 16 : 0 aldehyde. The DNA G+C content was 36.6 mol%. A novel genus and species, Herbinix hemicellulosilytica gen. nov., sp. nov., is proposed based on phylogenetic analysis and physiological properties of the novel isolate. Strain T3/55T ( = DSM 29228T = CECT 8801T), represents the type strain of Herbinix hemicellulosilytica gen. nov., sp. nov.


Asunto(s)
Biocombustibles/microbiología , Clostridiales/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Reactores Biológicos/microbiología , Celulosa/metabolismo , Clostridiales/genética , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
18.
Appl Environ Microbiol ; 78(12): 4301-7, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22522677

RESUMEN

Artificial cellulase complexes active on crystalline cellulose were reconstituted in vitro from a native mix of cellulosomal enzymes and CipA scaffoldin. Enzymes containing dockerin modules for binding to the corresponding cohesin modules were prepared from culture supernatants of a C. thermocellum cipA mutant. They were reassociated to cellulosomes via dockerin-cohesin interaction. Recombinantly produced mini-CipA proteins with one to three cohesins either with or without the carbohydrate-binding module (CBM) and the complete CipA protein were used as the cellulosomal backbone. The binding between cohesins and dockerins occurred spontaneously. The hydrolytic activity against soluble and crystalline cellulosic compounds showed that the composition of the complex does not seem to be dependent on which CipA-derived cohesin was used for reconstitution. Binding did not seem to have an obvious local preference (equal binding to Coh1 and Coh6). The synergism on crystalline cellulose increased with an increasing number of cohesins in the scaffoldin. The in vitro-formed complex showed a 12-fold synergism on the crystalline substrate (compared to the uncomplexed components). The activity of reconstituted cellulosomes with full-size CipA reached 80% of that of native cellulosomes. Complexation on the surface of nanoparticles retained the activity of protein complexes and enhanced their stability. Partial supplementation of the native cellulosome components with three selected recombinant cellulases enhanced the activity on crystalline cellulose and reached that of the native cellulosome. This opens possibilities for in vitro complex reconstitution, which is an important step toward the creation of highly efficient engineered cellulases.


Asunto(s)
Celulasa/química , Celulasa/metabolismo , Celulosa/metabolismo , Clostridium thermocellum/química , Clostridium thermocellum/enzimología , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Hidrólisis , Multimerización de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
19.
Biotechnol Biofuels Bioprod ; 15(1): 121, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371193

RESUMEN

BACKGROUND: Plant cell walls represent the most plentiful renewable organic resource on earth, but due to their heterogeneity, complex structure and partial recalcitrance, their use as biotechnological feedstock is still limited. RESULTS: In order to identify efficient enzymes for polysaccharide breakdown, we have carried out functional screening of metagenomic fosmid libraries from biogas fermenter microbial communities grown on sugar beet pulp, an arabinan-rich agricultural residue, or other sources containing microbes that efficiently depolymerize polysaccharides, using CPH (chromogenic polysaccharide hydrogel) or ICB (insoluble chromogenic biomass) labeled polysaccharide substrates. Seventy-one depolymerase-encoding genes were identified from 55 active fosmid clones by using Illumina and Sanger sequencing and dbCAN CAZyme (carbohydrate-active enzyme) annotation. An around 56 kb assembled DNA fragment putatively originating from Xylanivirga thermophila strain or a close relative was analyzed in detail. It contained 48 ORFs (open reading frames), of which 31 were assigned to sugar metabolism. Interestingly, a large number of genes for enzymes putatively involved in degradation and utilization of arabinose-containing carbohydrates were found. Seven putative arabinosyl hydrolases from this DNA fragment belonging to glycoside hydrolase (GH) families GH51 and GH43 were biochemically characterized, revealing two with endo-arabinanase activity and four with exo-α-L-arabinofuranosidase activity but with complementary cleavage properties. These enzymes were found to act synergistically and can completely hydrolyze SBA (sugar beet arabinan) and DA (debranched arabinan). CONCLUSIONS: We screened 32,776 fosmid clones from several metagenomic libraries with chromogenic lignocellulosic substrates for functional enzymes to advance the understanding about the saccharification of recalcitrant lignocellulose. Seven putative X. thermophila arabinosyl hydrolases were characterized for pectic substrate degradation. The arabinosyl hydrolases displayed maximum activity and significant long-term stability around 50 °C. The enzyme cocktails composed in this study fully degraded the arabinan substrates and thus could serve for arabinose production in food and biofuel industries.

20.
Front Mol Biosci ; 9: 907439, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847984

RESUMEN

Functional, biochemical, and preliminary structural properties are reported for three glycoside hydrolases of the recently described glycoside hydrolase (GH) family 159. The genes were cloned from the genomic sequences of different Caldicellulosiruptor strains. This study extends the spectrum of functions of GH159 enzymes. The only activity previously reported for GH159 was hydrolytic activity on ß-galactofuranosides. Activity screening using a set of para-nitrophenyl (pNP) glycosides suggested additional arabinosidase activity on substrates with arabinosyl residues, which has not been previously reported for members of GH159. Even though the thermophilic enzymes investigated-Cs_Gaf159A, Ch_Gaf159A, and Ck_Gaf159A-cleaved pNP-α-l-arabinofuranoside, they were only weakly active on arabinogalactan, and they did not cleave arabinose from arabinan, arabinoxylan, or gum arabic. However, the enzymes were able to hydrolyze the α-1,3-linkage in different arabinoxylan-derived oligosaccharides (AXOS) with arabinosylated xylose at the non-reducing end (A3X, A2,3XX), suggesting their role in the intracellular hydrolysis of oligosaccharides. Crystallization and structural analysis of the apo form of one of the Caldicellulosiruptor enzymes, Ch_Gaf159A, enabled the elucidation of the first 3D structure of a GH159 member. This work revealed a five-bladed ß-propeller structure for GH159 enzymes. The 3D structure and its substrate-binding pocket also provides an explanation at the molecular level for the observed exo-activity of the enzyme. Furthermore, the structural data enabled the prediction of the catalytic amino acids. This was supported by the complete inactivation by mutation of residues D19, D142, and E190 of Ch_Gaf159A.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA