Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ultrasound Med Biol ; 50(8): 1194-1202, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38734528

RESUMEN

OBJECTIVES: To assess the value of 3D multiparametric ultrasound imaging, combining hemodynamic and tissue stiffness quantifications by machine learning, for the prediction of prostate biopsy outcomes. METHODS: After signing informed consent, 54 biopsy-naïve patients underwent a 3D dynamic contrast-enhanced ultrasound (DCE-US) recording, a multi-plane 2D shear-wave elastography (SWE) scan with manual sweeping from base to apex of the prostate, and received 12-core systematic biopsies (SBx). 3D maps of 18 hemodynamic parameters were extracted from the 3D DCE-US quantification and a 3D SWE elasticity map was reconstructed based on the multi-plane 2D SWE acquisitions. Subsequently, all the 3D maps were segmented and subdivided into 12 regions corresponding to the SBx locations. Per region, the set of 19 computed parameters was further extended by derivation of eight radiomic features per parameter. Based on this feature set, a multiparametric ultrasound approach was implemented using five different classifiers together with a sequential floating forward selection method and hyperparameter tuning. The classification accuracy with respect to the biopsy reference was assessed by a group-k-fold cross-validation procedure, and the performance was evaluated by the Area Under the Receiver Operating Characteristics Curve (AUC). RESULTS: Of the 54 patients, 20 were found with clinically significant prostate cancer (csPCa) based on SBx. The 18 hemodynamic parameters showed mean AUC values varying from 0.63 to 0.75, and SWE elasticity showed an AUC of 0.66. The multiparametric approach using radiomic features derived from hemodynamic parameters only produced an AUC of 0.81, while the combination of hemodynamic and tissue-stiffness quantifications yielded a significantly improved AUC of 0.85 for csPCa detection (p-value < 0.05) using the Gradient Boosting classifier. CONCLUSIONS: Our results suggest 3D multiparametric ultrasound imaging combining hemodynamic and tissue-stiffness features to represent a promising diagnostic tool for biopsy outcome prediction, aiding in csPCa localization.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Imagenología Tridimensional , Próstata , Neoplasias de la Próstata , Ultrasonografía , Humanos , Masculino , Próstata/diagnóstico por imagen , Próstata/patología , Persona de Mediana Edad , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Anciano , Imagenología Tridimensional/métodos , Diagnóstico por Imagen de Elasticidad/métodos , Ultrasonografía/métodos , Valor Predictivo de las Pruebas , Biopsia
2.
Virchows Arch ; 483(2): 197-206, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37407736

RESUMEN

The development of artificial intelligence-based imaging techniques for prostate cancer (PCa) detection and diagnosis requires a reliable ground truth, which is generally based on histopathology from radical prostatectomy specimens. This study proposes a comprehensive protocol for the annotation of prostatectomy pathology slides. To evaluate the reliability of the protocol, interobserver variability was assessed between five pathologists, who annotated ten radical prostatectomy specimens consisting of 74 whole mount pathology slides. Interobserver variability was assessed for both the localization and grading of PCa. The results indicate excellent overall agreement on the localization of PCa (Gleason pattern ≥ 3) and clinically significant PCa (Gleason pattern ≥ 4), with Dice similarity coefficients (DSC) of 0.91 and 0.88, respectively. On a per-slide level, agreement for primary and secondary Gleason pattern was almost perfect and substantial, with Fleiss Kappa of .819 (95% CI .659-.980) and .726 (95% CI .573-.878), respectively. Agreement on International Society of Urological Pathology Grade Group was evaluated for the index lesions and showed agreement in 70% of cases, with a mean DSC of 0.92 for all index lesions. These findings show that a standardized protocol for prostatectomy pathology annotation provides reliable data on PCa localization and grading, with relatively high levels of interobserver agreement. More complicated tissue characterization, such as the presence of cribriform growth and intraductal carcinoma, remains a source of interobserver variability and should be treated with care when used in ground truth datasets.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/patología , Reproducibilidad de los Resultados , Inteligencia Artificial , Prostatectomía , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Clasificación del Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA