Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
EMBO J ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907033

RESUMEN

Cell polarity networks are defined by quantitative features of their constituent feedback circuits, which must be tuned to enable robust and stable polarization, while also ensuring that networks remain responsive to dynamically changing cellular states and/or spatial cues during development. Using the PAR polarity network as a model, we demonstrate that these features are enabled by the dimerization of the polarity protein PAR-2 via its N-terminal RING domain. Combining theory and experiment, we show that dimer affinity is optimized to achieve dynamic, selective, and cooperative binding of PAR-2 to the plasma membrane during polarization. Reducing dimerization compromises positive feedback and robustness of polarization. Conversely, enhanced dimerization renders the network less responsive due to kinetic trapping of PAR-2 on internal membranes and reduced sensitivity of PAR-2 to the anterior polarity kinase, aPKC/PKC-3. Thus, our data reveal a key role for a dynamically oligomeric RING domain in optimizing interaction affinities to support a robust and responsive cell polarity network, and highlight how optimization of oligomerization kinetics can serve as a strategy for dynamic and cooperative intracellular targeting.

2.
Proc Natl Acad Sci U S A ; 119(28): e2201250119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35867744

RESUMEN

Phase separation has emerged as an essential concept for the spatial organization inside biological cells. However, despite the clear relevance to virtually all physiological functions, we understand surprisingly little about what phases form in a system of many interacting components, like in cells. Here we introduce a numerical method based on physical relaxation dynamics to study the coexisting phases in such systems. We use our approach to optimize interactions between components, similar to how evolution might have optimized the interactions of proteins. These evolved interactions robustly lead to a defined number of phases, despite substantial uncertainties in the initial composition, while random or designed interactions perform much worse. Moreover, the optimized interactions are robust to perturbations, and they allow fast adaption to new target phase counts. We thus show that genetically encoded interactions of proteins provide versatile control of phase behavior. The phases forming in our system are also a concrete example of a robust emergent property that does not rely on fine-tuning the parameters of individual constituents.


Asunto(s)
Condensados Biomoleculares , Células , Fenómenos Físicos , Modelos Teóricos , Proteínas
3.
Eur Phys J E Soft Matter ; 47(1): 8, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270681

RESUMEN

We study the formation of vesicle condensates induced by the protein synapsin, as a cell-free model system mimicking vesicle pool formation in the synapse. The system can be considered as an example of liquid-liquid phase separation (LLPS) in biomolecular fluids, where one phase is a complex fluid itself consisting of vesicles and a protein network. We address the pertinent question why the LLPS is self-limiting and stops at a certain size, i.e., why macroscopic phase separation is prevented. Using fluorescence light microscopy, we observe different morphologies of the condensates (aggregates) depending on the protein-to-lipid ratio. Cryogenic electron microscopy then allows us to resolve individual vesicle positions and shapes in a condensate and notably the size and geometry of adhesion zones between vesicles. We hypothesize that the membrane tension induced by already formed adhesion zones then in turn limits the capability of vesicles to bind additional vesicles, resulting in a finite condensate size. In a simple numerical toy model we show that this effect can be accounted for by redistribution of effective binding particles on the vesicle surface, accounting for the synapsin-induced adhesion zone.

4.
J Chem Phys ; 160(22)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38856073

RESUMEN

Droplets are essential for spatially controlling biomolecules in cells. To work properly, cells need to control the emergence and morphology of droplets. On the one hand, driven chemical reactions can affect droplets profoundly. For instance, reactions can control how droplets nucleate and how large they grow. On the other hand, droplets coexist with various organelles and other structures inside cells, which could affect their nucleation and morphology. To understand the interplay of these two aspects, we study a continuous field theory of active phase separation. Our numerical simulations reveal that reactions suppress nucleation while attractive walls enhance it. Intriguingly, these two effects are coupled, leading to shapes that deviate substantially from the spherical caps predicted for passive systems. These distortions result from anisotropic fluxes responding to the boundary conditions dictated by the Young-Dupré equation. Interestingly, an electrostatic analogy of chemical reactions confirms these effects. We thus demonstrate how driven chemical reactions affect the emergence and morphology of droplets, which could be crucial for understanding biological cells and improving technical applications, e.g., in chemical engineering.

5.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34588303

RESUMEN

Biological cells use droplets to separate components and spatially control their interior. Experiments demonstrate that the complex, crowded cellular environment affects the droplet arrangement and their sizes. To understand this behavior, we here construct a theoretical description of droplets growing in an elastic matrix, which is motivated by experiments in synthetic systems where monodisperse emulsions form during a temperature decrease. We show that large droplets only form when they break the surrounding matrix in a cavitation event. The energy barrier associated with cavitation stabilizes small droplets on the order of the mesh size and diminishes the stochastic effects of nucleation. Consequently, the cavitated droplets have similar sizes and highly correlated positions. In particular, we predict the density of cavitated droplets, which increases with faster cooling, as in the experiments. Our model also suggests how adjusting the cooling protocol and the density of nucleation sites affects the droplet size distribution. In summary, our theory explains how elastic matrices affect droplets in the synthetic system, and it provides a framework for understanding the biological case.

6.
Biochem Soc Trans ; 51(3): 1179-1190, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37145037

RESUMEN

Meiotic crossovers, which are exchanges of genetic material between homologous chromosomes, are more evenly and distantly spaced along chromosomes than expected by chance. This is because the occurrence of one crossover reduces the likelihood of nearby crossover events - a conserved and intriguing phenomenon called crossover interference. Although crossover interference was first described over a century ago, the mechanism allowing coordination of the fate of potential crossover sites half a chromosome away remains elusive. In this review, we discuss the recently published evidence supporting a new model for crossover patterning, coined the coarsening model, and point out the missing pieces that are still needed to complete this fascinating puzzle.


Asunto(s)
Cromosomas , Intercambio Genético , Meiosis
7.
Phys Rev Lett ; 130(24): 248201, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37390433

RESUMEN

Driven chemical reactions can control the macroscopic properties of droplets, like their size. Such active droplets are critical in structuring the interior of biological cells. Cells also need to control where and when droplets appear, so they need to control droplet nucleation. Our numerical simulations demonstrate that reactions generally suppress nucleation if they stabilize the homogeneous state. An equilibrium surrogate model reveals that reactions increase the effective energy barrier of nucleation, enabling quantitative predictions of the increased nucleation times. Moreover, the surrogate model allows us to construct a phase diagram, which summarizes how reactions affect the stability of the homogeneous phase and the droplet state. This simple picture provides accurate predictions of how driven reactions delay nucleation, which is relevant for understanding droplets in biological cells and chemical engineering.

8.
Phys Rev Lett ; 129(2): 028101, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35867448

RESUMEN

The continuous adaptation of networks like our vasculature ensures optimal network performance when challenged with changing loads. Here, we show that adaptation dynamics allow a network to memorize the position of an applied load within its network morphology. We identify that the irreversible dynamics of vanishing network links encode memory. Our analytical theory successfully predicts the role of all system parameters during memory formation, including parameter values which prevent memory formation. We thus provide analytical insight on the theory of memory formation in disordered systems.


Asunto(s)
Adaptación Fisiológica
9.
Proc Natl Acad Sci U S A ; 115(12): 2936-2941, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507204

RESUMEN

The nasal cavity is a vital component of the respiratory system that heats and humidifies inhaled air in all vertebrates. Despite this common function, the shapes of nasal cavities vary widely across animals. To understand this variability, we here connect nasal geometry to its function by theoretically studying the airflow and the associated scalar exchange that describes heating and humidification. We find that optimal geometries, which have minimal resistance for a given exchange efficiency, have a constant gap width between their side walls, while their overall shape can adhere to the geometric constraints imposed by the head. Our theory explains the geometric variations of natural nasal cavities quantitatively, and we hypothesize that the trade-off between high exchange efficiency and low resistance to airflow is the main driving force shaping the nasal cavity. Our model further explains why humans, whose nasal cavities evolved to be smaller than expected for their size, become obligate oral breathers in aerobically challenging situations.


Asunto(s)
Cavidad Nasal/anatomía & histología , Animales , Simulación por Computador , Humanos , Modelos Biológicos , Fenómenos Fisiológicos Respiratorios
10.
PLoS Comput Biol ; 15(7): e1007188, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31323033

RESUMEN

The olfactory system faces the difficult task of identifying an enormous variety of odors independent of their intensity. Primacy coding, where the odor identity is encoded by the receptor types that respond earliest, might provide a compact and informative representation that can be interpreted efficiently by the brain. In this paper, we analyze the information transmitted by a simple model of primacy coding using numerical simulations and statistical descriptions. We show that the encoded information depends strongly on the number of receptor types included in the primacy representation, but only weakly on the size of the receptor repertoire. The representation is independent of the odor intensity and the transmitted information is useful to perform typical olfactory tasks with close to experimentally measured performance. Interestingly, we find situations in which a smaller receptor repertoire is advantageous for discriminating odors. The model also suggests that overly sensitive receptor types could dominate the entire response and make the whole array useless, which allows us to predict how receptor arrays need to adapt to stay useful during environmental changes. Taken together, we show that primacy coding is more useful than simple binary and normalized coding, essentially because the sparsity of the odor representations is independent of the odor statistics, in contrast to the alternatives. Primacy coding thus provides an efficient odor representation that is independent of the odor intensity and might thus help to identify odors in the olfactory cortex.


Asunto(s)
Modelos Neurológicos , Odorantes , Percepción Olfatoria/fisiología , Receptores Odorantes/fisiología , Olfato/fisiología , Animales , Biología Computacional , Simulación por Computador , Humanos , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología
11.
Soft Matter ; 16(25): 5898-5905, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32525198

RESUMEN

Liquid droplets embedded in soft solids are a new composite material whose properties are not very well explored. In particular, it is unclear how the elastic properties of the matrix affect the dynamics of the droplets. Here, we study theoretically how stiffness gradients influence droplet growth and arrangement. We show that stiffness gradients imply concentration gradients in the dilute phase, which transport droplet material from stiff to soft regions. Consequently, droplets dissolve in the stiff region, creating a dissolution front. Using a mean-field theory, we predict that the front emerges where the curvature of the elasticity profile is large and that it propagates diffusively. This elastic ripening can occur at much higher rates than classical Ostwald ripening, thus driving the dynamics. Our work shows how gradients in elastic properties control the arrangement of droplets, which has potential applications in soft matter physics and biological cells.

12.
Soft Matter ; 16(25): 5892-5897, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32519711

RESUMEN

When liquid droplets nucleate and grow in a polymer network, compressive stresses can significantly increase their internal pressure, reaching values that far exceed the Laplace pressure. When droplets have grown in a polymer network with a stiffness gradient, droplets in relatively stiff regions of the network tend to dissolve, favoring growth of droplets in softer regions. Here, we show that this elastic ripening can be strong enough to reverse the direction of Ostwald ripening: large droplets can shrink to feed the growth of smaller ones. To numerically model these experiments, we generalize the theory of elastic ripening to account for gradients in solubility alongside gradients in mechanical stiffness.

13.
Rep Prog Phys ; 82(6): 064601, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30731446

RESUMEN

Phase separating systems that are maintained away from thermodynamic equilibrium via molecular processes represent a class of active systems, which we call active emulsions. These systems are driven by external energy input, for example provided by an external fuel reservoir. The external energy input gives rise to novel phenomena that are not present in passive systems. For instance, concentration gradients can spatially organise emulsions and cause novel droplet size distributions. Another example are active droplets that are subject to chemical reactions such that their nucleation and size can be controlled, and they can divide spontaneously. In this review, we discuss the physics of phase separation and emulsions and show how the concepts that govern such phenomena can be extended to capture the physics of active emulsions. This physics is relevant to the spatial organisation of the biochemistry in living cells, for the development of novel applications in chemical engineering and models for the origin of life.

14.
Proc Natl Acad Sci U S A ; 113(20): 5570-5, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27102871

RESUMEN

Natural odors typically consist of many molecules at different concentrations. It is unclear how the numerous odorant molecules and their possible mixtures are discriminated by relatively few olfactory receptors. Using an information theoretic model, we show that a receptor array is optimal for this task if it achieves two possibly conflicting goals: (i) Each receptor should respond to half of all odors and (ii) the response of different receptors should be uncorrelated when averaged over odors presented with natural statistics. We use these design principles to predict statistics of the affinities between receptors and odorant molecules for a broad class of odor statistics. We also show that optimal receptor arrays can be tuned to either resolve concentrations well or distinguish mixtures reliably. Finally, we use our results to predict properties of experimentally measured receptor arrays. Our work can thus be used to better understand natural olfaction, and it also suggests ways to improve artificial sensor arrays.


Asunto(s)
Biometría , Odorantes , Receptores Odorantes/fisiología , Humanos , Teoría de la Información , Olfato
15.
Phys Rev Lett ; 121(15): 158102, 2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30362788

RESUMEN

Chemically active droplets are nonequilibrium systems that combine phase separation with chemical reactions. We here investigate how the activity introduced by the chemical reactions influences solid particles inside such droplets. We find that passive particles are centered in active droplets governed by first-order reactions. In autocatalytic active droplets, only catalytically active particles can be centered. An example of such systems in biology are centrosomes. Our study can account for the observed positioning of centrioles and provides a general mechanism to control the position of particles within chemically active droplets.

16.
Proc Natl Acad Sci U S A ; 111(26): E2636-45, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24979791

RESUMEN

Centrosomes are highly dynamic, spherical organelles without a membrane. Their physical nature and their assembly are not understood. Using the concept of phase separation, we propose a theoretical description of centrosomes as liquid droplets. In our model, centrosome material occurs in a form soluble in the cytosol and a form that tends to undergo phase separation from the cytosol. We show that an autocatalytic chemical transition between these forms accounts for the temporal evolution observed in experiments. Interestingly, the nucleation of centrosomes can be controlled by an enzymatic activity of the centrioles, which are present at the core of all centrosomes. This nonequilibrium feature also allows for multiple stable centrosomes, a situation that is unstable in equilibrium phase separation. Our theory explains the growth dynamics of centrosomes for all cell sizes down to the eight-cell stage of the Caenorhabditis elegans embryo, and it also accounts for data acquired in experiments with aberrant numbers of centrosomes and altered cell volumes. Furthermore, the model can describe unequal centrosome sizes observed in cells with perturbed centrioles. We also propose an interpretation of the molecular details of the involved proteins in the case of C. elegans. Our example suggests a general picture of the organization of membraneless organelles.


Asunto(s)
Centriolos/metabolismo , Centrosoma/química , Modelos Químicos , Catálisis , Difusión , Cinética , Termodinámica
17.
Proc Natl Acad Sci U S A ; 107(52): 22540-5, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21149676

RESUMEN

The cyanobacterium Synechococcus elongatus uses both a protein phosphorylation cycle and a transcription-translation cycle to generate circadian rhythms that are highly robust against biochemical noise. We use stochastic simulations to analyze how these cycles interact to generate stable rhythms in growing, dividing cells. We find that a protein phosphorylation cycle by itself is robust when protein turnover is low. For high decay or dilution rates (and compensating synthesis rates), however, the phosphorylation-based oscillator loses its integrity. Circadian rhythms thus cannot be generated with a phosphorylation cycle alone when the growth rate, and consequently the rate of protein dilution, is high enough; in practice, a purely posttranslational clock ceases to function well when the cell doubling time drops below the 24-h clock period. At higher growth rates, a transcription-translation cycle becomes essential for generating robust circadian rhythms. Interestingly, although a transcription-translation cycle is necessary to sustain a phosphorylation cycle at high growth rates, a phosphorylation cycle can dramatically enhance the robustness of a transcription-translation cycle at lower protein decay or dilution rates. In fact, the full oscillator built from these two tightly intertwined cycles far outperforms not just each of its two components individually, but also a hypothetical system in which the two parts are coupled as in textbook models of coupled phase oscillators. Our analysis thus predicts that both cycles are required to generate robust circadian rhythms over the full range of growth conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Ritmo Circadiano/fisiología , Synechococcus/metabolismo , Algoritmos , Proteínas Bacterianas/genética , Ciclo Celular/genética , Ciclo Celular/fisiología , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Modelos Biológicos , Fosforilación , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Procesos Estocásticos , Synechococcus/citología , Synechococcus/genética , Factores de Tiempo , Transcripción Genética
18.
Phys Rev E ; 108(3-1): 034206, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37849174

RESUMEN

Spatiotemporal patterns are often modeled using reaction-diffusion equations, which combine complex reactions between constituents with ideal diffusive motion. Such descriptions neglect physical interactions between constituents, which might affect resulting patterns. To overcome this, we study how physical interactions affect cyclic dominant reactions, like the seminal rock-paper-scissors game, which exhibits spiral waves for ideal diffusion. Generalizing diffusion to incorporate physical interactions, we find that weak interactions change the length- and time scales of spiral waves, consistent with a mapping to the complex Ginzburg-Landau equation. In contrast, strong repulsive interactions typically generate oscillating lattices, and strong attraction leads to an interplay of phase separation and chemical oscillations, like droplets co-locating with cores of spiral waves. Our work suggests that physical interactions are relevant for forming spatiotemporal patterns in nature, and it might shed light on how biodiversity is maintained in ecological settings.

19.
J R Soc Interface ; 20(204): 20230244, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37434500

RESUMEN

Turing's mechanism is often invoked to explain periodic patterns in nature, although direct experimental support is scarce. Turing patterns form in reaction-diffusion systems when the activating species diffuse much slower than the inhibiting species, and the involved reactions are highly nonlinear. Such reactions can originate from cooperativity, whose physical interactions should also affect diffusion. We here take direct interactions into account and show that they strongly affect Turing patterns. We find that weak repulsion between the activator and inhibitor can substantially lower the required differential diffusivity and reaction nonlinearity. By contrast, strong interactions can induce phase separation, but the resulting length scale is still typically governed by the fundamental reaction-diffusion length scale. Taken together, our theory connects traditional Turing patterns with chemically active phase separation, thus describing a wider range of systems. Moreover, we demonstrate that even weak interactions affect patterns substantially, so they should be incorporated when modelling realistic systems.


Asunto(s)
Difusión
20.
Phys Rev E ; 107(3-1): 034407, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37073018

RESUMEN

Biological flow networks adapt their network morphology to optimize flow while being exposed to external stimuli from different spatial locations in their environment. These adaptive flow networks retain a memory of the stimulus location in the network morphology. Yet, what limits this memory and how many stimuli can be stored are unknown. Here, we study a numerical model of adaptive flow networks by applying multiple stimuli subsequently. We find strong memory signals for stimuli imprinted for a long time into young networks. Consequently, networks can store many stimuli for intermediate stimulus duration, which balance imprinting and aging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA