Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Educ ; 101(2): 490-500, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38370574

RESUMEN

In an ongoing effort to incorporate active learning and promote higher order learning outcomes in undergraduate organic chemistry, a hybrid ("flipped") classroom structure has been used to facilitate a series of collaborative activities in the first two courses of the lower division organic chemistry sequence. An observational study of seven classes over a five-year period reveals there is a strong correlation between performance on the in-class activities and performance on the final exam across all classes; however, a significant number of students in these courses continue to struggle on both the in-class activities and final exam. The Activity Engagement Survey (AcES) was administered in the most recent course offering included in this study, and these preliminary data suggest that students who achieved lower scores on the in-class activities had lower levels of emotional and behavioral/cognitive engagement and were less likely to work in collaborative groups. In total, these findings suggest that if students can be guided to engage more successfully with the in-class activities, they are likely to be more successful in carrying out the higher order learning required on the final exam. In addition to the analyses of student performance and engagement in the in-class activities, the implementation of the flipped classroom structure and suggestions for how student engagement in higher order learning might be improved in future iterations of the class are described herein.

2.
Chemistry ; 29(11): e202203588, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36409525

RESUMEN

Appending functional groups to the exterior of Zn4 L4 self-assembled cages allows gated control of anion binding. While the unfunctionalized cages contain aryl groups in the ligand that can freely rotate, attaching inert functional groups creates a "doorstop", preventing rotation and slowing the guest exchange rate, even though the interiors of the host cavities are identically structured. The effects on anion exchange are subtle and depend on multiple factors, including anion size, the nature of the leaving anion, and the electron-withdrawing ability and steric bulk of the pendant groups. Multiple exchange mechanisms occur, and the nature of the external groups controls associative and dissociative exchange processes: these bulky groups affect both anion egress and ingress, introducing an extra layer of selectivity to the exchange. Small changes can have large effects: affinities for anions as similar as PF6 - and SbF6 - can vary by as much as 400-fold between identically sized cavities.

3.
Chemistry ; 29(63): e202302499, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37584901

RESUMEN

Spacious M4 L6 tetrahedra can act as catalytic inhibitors for base-mediated reactions. Upon adding only 5 % of a self-assembled Fe4 L6 cage complex, the conversion of the conjugate addition between ethylcyanoacetate and ß-nitrostyrene catalyzed by proton sponge can be reduced from 83 % after 75 mins at ambient temperature to <1 % under identical conditions. The mechanism of the catalytic inhibition is unusual: the octacationic Fe4 L6 cage increases the acidity of exogenous water in the acetonitrile reaction solvent by favorably binding the conjugate acid of the basic catalyst. The inhibition only occurs for Fe4 L6 hosts with spacious internal cavities: minimal inhibition is seen with smaller tetrahedra or Fe2 L3 helicates. The surprising tendency of the cationic cage to preferentially bind protonated, cationic ammonium guests is quantified via the comprehensive modeling of spectrophotometric titration datasets.

4.
Angew Chem Int Ed Engl ; 61(11): e202117011, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35030288

RESUMEN

A self-assembled FeII4 L6 cage was synthesized with 12 internal amines in the cavity. The cage forms as the dodeca-ammonium salt, despite the cage carrying an overall 8+ charge at the metal centers, extracting protons from displaced water in the reaction. Despite this, the basicity of the internal amines is lower than their counterparts in free solution. The 12 amines have a sliding scale of basicity, with a ≈6 pKa unit difference between the first and last protons to be removed. This moderation of side-chain basicity in an active site is a hallmark of enzymatic catalysis.


Asunto(s)
Aminas/química , Compuestos Ferrosos/síntesis química , Cationes/síntesis química , Cationes/química , Compuestos Ferrosos/química , Ligandos , Estructura Molecular
5.
J Org Chem ; 86(18): 12862-12871, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34492175

RESUMEN

A self-assembled Fe4L6 cage with internally oriented carboxylic acid functions was shown to catalyze a variety of dissociative nucleophilic substitution reactions that proceed via oxocarbenium ion or carbocation intermediates. The catalytic behavior of the cage was compared to that of other small acid catalysts, which illustrated large differences in reactivity of the cage-catalyzed reactions, dependent on the structure of the substrate. For example, only a 5% cage confers a 1000-fold rate acceleration of the thioetherification of vinyldiphenylmethanol when compared to the rate with free carboxylic acid surrogates but only a 52-fold acceleration in the formation of small thioacetals. Multiple factors control the variable reactivity in the host, including substrate inhibition, binding affinity, and accessibility of reactive groups once bound. Simple effective concentration increases or the overall charge of the cage does not explain the variations in reactivity shown by highly similar reactants in the host: small differences in structure can have large effects on reactivity. Reaction of large spherical guests is highly dependent on substitution, whereas flat guests are almost unaffected by size and shape differences. The cage is a promiscuous catalyst but has strong selectivity for particular substrate shapes, reminiscent of enzymatic activity.


Asunto(s)
Ácidos Carboxílicos , Catálisis , Fenómenos Químicos Orgánicos
6.
Dalton Trans ; 51(29): 10920-10929, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35796048

RESUMEN

Self-assembled Fe4L6 cage complexes with variable internal functions can be synthesized from a 2,7-dibromocarbazole ligand scaffold, which orients six functional groups to the cage interior. Both ethylthiomethylether and ethyldimethylamino groups can be incorporated. The cages show strong ligand-centered fluorescence emission and a broad range of guest binding properties. Coencapsulation of neutral organic guests is favored in the larger, unfunctionalized cage cavity, whereas the thioether cage has a more sterically hindered cavity that favors 1 : 1 guest binding. Binding affinities up to 106 M-1 in CH3CN are seen. The dimethylamino cage is more complex, as the internal amines display partial protonation and can be deprotonated by amine bases. This amine cage displays affinity for a broad range of neutral organic substrates, with affinities and stoichiometries comparable to that of the similarly sized thioether cage. These species show that simple variations in ligand backbone allow variations in the number and type of functions that can be displayed towards the cavity of self-assembled hosts, which will have applications in biomimetic sensing, catalysis and molecular recognition.


Asunto(s)
Aminas , Sulfuros , Catálisis , Ligandos , Modelos Moleculares
7.
Chem Commun (Camb) ; 56(91): 14263-14266, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33124641

RESUMEN

A spacious Fe(ii)-iminopyridine self-assembled cage complex can catalyze the oxidative dimerization of alkanethiols, with air as stoichiometric oxidant. The reaction is aided by selective molecular recognition of the reactants, and the active catalyst is derived from the Fe(ii) centers that provide the structural vertices of the host. The host is even capable of size-selective oxidation and can discriminate between alkanethiols of identical reactivity, based solely on size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA